首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
文[1]至文[4]都对如下两类常见的对称问题进行了辨析:例1设函数y=f(x)定义在实数集上,且满足f(1 x)=f(1-x),则f(x)的图像关于对称.例2若函数y=f(x)的定义域为R,则函数y=f(1 x)与y=f(1-x)的图像关于对称.作为其补充,本文再给出一组容易混淆的对称问题:例3若函数f(x)(x∈R)满足:f(x-3) f(1-x)=0,且方程f(x)=0恰有三个相异实根,求这三根之和.例4已知函数f(x)(x∈R),若方程f(x-3) f(1-x)=0恰有三个相异实根,求这三根之和.分析对于例3,由条件知:f(x)的图像关于点(-1,0)成中心对称,又已知方程f(x)=0恰有三个相异实根,所以这三个根中必有一根为-1…  相似文献   

2.
<正>如果函数y=f(x)在x=a处的函数值等于零,即f(a)=0,则称a为函数y=f(x)的零点,因此函数y=f(x)的零点就是方程f(x)=0的根。函数的零点把函数和方程紧密地联系在一起。函数的零点是函数的一个重要性质,在分析解题思路、探究解题方法中发挥着重要作用。一、利用函数零点研究方程的根由于函数y=f(x)的零点就是方程f(x)=0的根,所以在研究方程的有关问题(比较方程根的大小、确定方程根的分布、证明根的存在性等)时,都可以将方程问题转化  相似文献   

3.
三次函数f(x)=ax3 bx2 cx d(a≠0)已经成为中学阶段一个重要的函数.本文给出并证明三次函数的三个性质,并例说性质的应用.函数f(x)=ax3 bx2 cx d(a≠0)的导函数为f/(x)=3ax2 2bx c.导函数的对应方程为f/(x)=0即3ax2 2bx c=0,其判别式Δ=4(b2-3ac).若Δ>0,设其两根为x1、x2,并设x1相似文献   

4.
高中数学新课程(人教A版)必修一第3.1.1节讲了方程的根、函数的零点问题:方程f(x)=0有实数根函数y=f(x)的图象与x轴有公共点函数y=f(x)有零点,可见函数的零点从不同的角度将数与形,函数与方程有机地联系在一起.从函数的角度来看,零点就是使得函数值为0的实数;从方程的角度来看,零点就是相应方程f(x)=0的实数根;从函数的图象来看,零点就是函数f(x)的图象与x轴交点的横坐标.一些方程不涉及方程  相似文献   

5.
1.求方程的根 例1 求满足方程2sin2x sinx-sin2x=3cosx的锐角x的值.(03年湖南省高数竞) 分析 对于同一单调区间内的两个变量x1,x2,若f(x1)=f(x2),则必有x1=x2. 解 因为 x为锐角,所以 cosx≠0.方程两边同除以cosx得 2sinx·tanx tanx-2sinx=3,即 (2sinx 1)(tanx-1)=2.因为 函数f(x)=(2sinx 1)(tanx-1)在(0,π/4)内f(x)<0,在[π/4,π/2)内严格单调递  相似文献   

6.
<正>命题1函数f(x)=ax+b(a≠0)满足:f(x_1)f(x_2)<0,则■x_0∈(x_1,x_2),有f(x_0)=0.证明:函数f(x)=ax+b的零点即方程ax+b=0的根,b由a≠0知方程ax+b=0有实数根x_0=-a/b,即f(x_0)=0,所以只需证x_0=-∈(x,由f(x_1)f(x_2)<0得(ax_1+b)(ax_2+b)<0即:  相似文献   

7.
1 基础知识 1.1注意函数的零点与方程的根的关系 一般地,对于函数y=f(x)(x∈D)我们称方程f(x)=0的实数根x也叫做函数的零点,即函数的零点就是使函数值为零的自变量的值.求综合方程f(x)=g(x)的根或根的个数就是求函数y=f(x)-g(x)的零点.  相似文献   

8.
函数的奇偶性与周期性有如下一种关系:定理1设函数y=f(x)(x∈R)是偶函数,且f(a-x)=f(a x)(a≠0),则函数y=f(x)必是周期函数,且2a是它的一个周期.证明:由f(x)是偶函数知,对任意x∈R,有f(-x)=f(x).又因为  相似文献   

9.
题(2007年高考江苏第21题)已知a,b,c,d是不全为0的实数,函数f(x)=bx2 cx d,g(x)=ax3 bx2 cx d,方程f(x)=0有实根,且f(x)=0的实数根都是g(f(x))=0的根;相反,g(f(x))=0的实数根都是f(x)=0的根.(1)求d的值;(2)若a=0,求c的取值范围.(3)若a=1,f(1)=0,求c的取值范围.本题主要考查函数  相似文献   

10.
童其林 《新高考》2011,(11):38-41
零点定理是新教材中增加的一个重要定理,在解题中有着广泛的应用.什么是零点呢?对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.即方程f(x)=0有实数根图像y=f(x)与x轴有交点函数y=f(x)有零点.什么是零点定理呢?如  相似文献   

11.
<正>对于函数y=f(x),我们把使f(x)=0的实数x叫做函数的零点.这样,函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴(直线y=0)交点的  相似文献   

12.
1不动点法把方程f(x)=x的根叫做函数f(x)的不动点,方程f(x)=x叫特征方程.(1)对一般的递推数列{an},若f(x)=ax bcx d,an 1=f(an)1当函数f(x)有两个不同的不动点α,β时,令bn=aann--βα,则bn 1=aa--ccβαbn,问题转化为等比数列.2当函数f(x)有一个不动点α,可令bn=1an-α,则bn 1-bn=a-ccα,问题转化为等差数列.(2)设函数f(x)=2xx2 AB有两个不同的不动点x1,x2,且an 1=f(an),则aann 11--xx12=(aann--xx21)2证明:aann 11--xx12=an2 A2an B-x1an2 A2an B-x2=an2-2x1an A-Bx1an2-2x2an A-Bx2因为x1,x2是方程2xx2 AB=x的两根,所以2xx211 …  相似文献   

13.
中学代数中,有些较为特殊的方程,在实数范围内无解,若依照一般解法,不但演算过程复杂,而且很难判定它们在实数范围内是否无解。本文试图给出这类无解方程的两个判定定理,可以简化解题过程,省时省力。定理1:若方程f(x)=0可表示成f_1[g(x)]=0,且f_1(y)=0无实数根,则方程f(x)=0无实数根。(其中f(x),g(x),f_1(y)均为代数函数,下面定理2假设相同。)。证明:设f(x)=0有实数根x_0,则有: f_1[g(x_0)]=0。令 y_0=g(x_0),则f_1(y_0)=0 即y_0是方程f_1(y)=0的实数根,与题设相矛盾。从而方程f(x)=0无实数根。定理2:若f(x)=0可表示成f_1[g(x)]=0,且f_1(y)=0有实数根y_1,y_2,…,y_n,但对于每一个y_i(1≤i≤n),方程g(x)=y_i都无实数根,则方程f(x)=0无实根。  相似文献   

14.
热点题型一函数的基本概念例1定义在R上的函数f(x)既是奇函数,又是周期函数,T是它的一个正周期.若将方程f(x)=0在闭区间[-2T,2T]上的根的个数记为n,则n可能为  相似文献   

15.
一、函数概念与性质综合题运用函数概念与性质(含临时定义的性质),并借助方程工具,可解决抽象函数的求值、单调性、奇偶性、有界性等诸多问题. 例1 设f(x)是定义R上的偶函数。其图象关于直线x=1对称,对任意x1,x2∈[0,1/2],都有f(x1 x2)=f(x1)·f(x2),且f(1)=a>0.①求f(1/2)及f(1/4);②证明f(x)是周期函数.  相似文献   

16.
由于三次函数f(x)=ax3+bx2+cx+d(a>0)的导数是二次函数,二次函数是高中数学中的重要内容,所以三次函数的问题已成为高考命题的一个新的热点和亮点.1三次函数的性质1.1三次函数的单调性因为f′(x)=3ax2+2bx+c,所以方程f′(x)=0中,Δ=4b2-12ac=4(b2-3ac),于是:(1)当b2-3ac>0时,方程f′(x)=0有两个不同的实数根x1,x2(不妨设x1相似文献   

17.
在[※]中讨论了双曲正弦与双曲余弦的特征方程本文将用更简捷的方法给出基本初等函数与双曲函数的特征方程及其证明。 1.若实函数f(x)在x=0点可导且对任意x,y∈R满足 f(x y)=f (x) f(y)则f(x)为线性函数。 证明:在(※)式中令y=0得 f(x)=f(x) f(0)(?)f(0)=0  相似文献   

18.
如果函数y=f(x)在x=a处的函数值等于零,即f(a)=0,则称a为函数y=f(x)的零点,因此函数y=f(x)的零点就是方程f(x)=0的根.函数的零点把函数和方程紧密地联系在一起,函数的零点是函数的一个重要特性,在分析解题思路、探求解题方法中发挥着重要作用,有些看似复杂的问题,借助零点都能迎刃而解.本文举例探讨函数零点在解题中  相似文献   

19.
对于一个确定的函数f(x),方程x=f(x) 的根x=x0称为f(x)的不动点.下面利用不 动点求数列通项. 1.三个定理 定理1 设f(x)=ax b(a≠0且a≠1), {xn}满足递归关系xn=f(xn-1)(n≥2),p为 f(x)的不动点,则xn-p=a(xn-1-p). 定理2 设f(x)=(ax b)/(cx d)(c≠0,ad-bc≠ 0),{xn)满足递归关系xn=f(xn-1)(n≥2),且  相似文献   

20.
例1(2004年重庆高考题)设函数f(x)=x(x-1)·(x-a),a>1,求导数f'(x),并证明有两个不同的极值点x1、x2.解析f'(x)=3x2-2(1+a)x+a.令f'(x)=0,得方程3x2-2(1+a)x+a=0.因Δ=4(a2-a+1)≥4a>0,故方程有两个不同的实根x1、x2.设x10;当x1x2时,f'(x)>0,因此,x1是极大值点,x2是极小值点.例2(2004年全国高考题)已知f(x)=ax3+3x2-x+1在R上是减函数,求a的取值范围.解析函数f(x)的导数:f'(x)=3ax2+6x-1.(Ⅰ)当f'(x)<0(xR)时,f(x)是减函数.3ax2+6x-1<0(xR)a<0且Δ…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号