首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Current practices for growth mixture modeling emphasize the importance of the proper parameterization and number of classes, but the impact of these decisions on latent class composition and the substantive implications has not been thoroughly addressed. Using measures of behavior from 575 middle school students, we compared the results of several multilevel growth mixture models. Results indicated a dramatic shift in class assignment as the models allowed class-varying parameters, with different substantive interpretations and resulting typologies. This research suggests that using variability as a criterion for class differences in a behavior typology can dramatically impact latent class membership. This study describes decisions and results from testing for noninvariance, with particular emphasis on how decisions about the nature of within-person variance can affect resulting subgroups and model parameters.  相似文献   

2.
Stage-sequential (or multiphase) growth mixture models are useful for delineating potentially different growth processes across multiple phases over time and for determining whether latent subgroups exist within a population. These models are increasingly important as social behavioral scientists are interested in better understanding change processes across distinctively different phases, such as before and after an intervention. One of the less understood issues related to the use of growth mixture models is how to decide on the optimal number of latent classes. The performance of several traditionally used information criteria for determining the number of classes is examined through a Monte Carlo simulation study in single- and multiphase growth mixture models. For thorough examination, the simulation was carried out in 2 perspectives: the models and the factors. The simulation in terms of the models was carried out to see the overall performance of the information criteria within and across the models, whereas the simulation in terms of the factors was carried out to see the effect of each simulation factor on the performance of the information criteria holding the other factors constant. The findings not only support that sample size adjusted Bayesian Information Criterion would be a good choice under more realistic conditions, such as low class separation, smaller sample size, or missing data, but also increase understanding of the performance of information criteria in single- and multiphase growth mixture models.  相似文献   

3.
Mixture modeling is a widely applied data analysis technique used to identify unobserved heterogeneity in a population. Despite mixture models' usefulness in practice, one unresolved issue in the application of mixture models is that there is not one commonly accepted statistical indicator for deciding on the number of classes in a study population. This article presents the results of a simulation study that examines the performance of likelihood-based tests and the traditionally used Information Criterion (ICs) used for determining the number of classes in mixture modeling. We look at the performance of these tests and indexes for 3 types of mixture models: latent class analysis (LCA), a factor mixture model (FMA), and a growth mixture models (GMM). We evaluate the ability of the tests and indexes to correctly identify the number of classes at three different sample sizes (n = 200, 500, 1,000). Whereas the Bayesian Information Criterion performed the best of the ICs, the bootstrap likelihood ratio test proved to be a very consistent indicator of classes across all of the models considered.  相似文献   

4.
Growth mixture modeling (GMM) is a useful statistical method for longitudinal studies because it includes features of both latent growth modeling (LGM) and finite mixture modeling. This Monte Carlo simulation study explored the impact of ignoring 3 types of time series processes (i.e., AR(1), MA(1), and ARMA(1,1)) in GMM and manipulated the separation of the latent classes, the strength of the time series process, and whether the errors conformed to the time series process in 1 or 2 latent classes. The results showed that omitting time series processes resulted in more serious bias in parameter estimation as the distance between classes increased. However, when the class distances were small, ignoring time series processes contributed to the selection of the correct number of classes. When the GMM models correctly specified the time series process, only models with an AR(1) time series process produced unbiased parameter estimates in most conditions. It was also found that among design factors manipulated, the distance between classes prominently affected the identification of the number of classes and parameter estimation.  相似文献   

5.
This article addresses issues of heterogeneity in multiple-stage development as it corresponds to qualitatively different development in alcohol use during adolescence. Using a piecewise growth mixture modeling methodology proposed by Muthén (in press), a 2-piece linear growth model capturing growth trajectories in adolescent alcohol use during the transition from middle school (ages 11 to 13) to high school (ages 14 to 17; N = 81) was examined. It was hypothesized that 2 stages of alcohol use development with varying trajectories would exist in these data, the 1st corresponding to development during middle school (Growth Rate 1), followed by a 2nd stage of continuing growth during high school (Growth Rate 2). Results suggested the tenability of the 2-piece linear development in alcohol use and the emergence of 2 latent classes with individually varying transition points. Class 1 showed linear increases only during high school, whereas Class 2 showed a continued, linear growth throughout the middle and high school years. Findings suggest that the sample population under study is heterogeneous and consists of 2 subpopulations, each defined by its unique growth trajectories and individually varying transitional growth processes. The piecewise growth mixture modeling approach is likely to provide researchers with insightful information regarding qualitative differences in adolescent substance use development as well as a potentially useful modeling technique for intervention studies involving evaluation of program effectiveness.  相似文献   

6.
Applications of growth mixture modeling have become widespread in the fields of medicine, public health, and the social sciences for modeling linear and nonlinear patterns of change in longitudinal data with presumed heterogeneity with respect to latent group membership. However, in contrast to linear approaches, there has been relatively less focus on methods for modeling nonlinear change. We introduce a nonlinear mixture modeling approach for estimating change trajectories that rely on the use of fractional polynomials within a growth mixture modeling framework. Fractional polynomials allow for more parsimonious and flexible models in comparison to conventional polynomial models. The procedures are illustrated through the use of math ability scores obtained from 499 children over a period of 3 years, with 4 measurement occasions. Techniques for identifying the best empirically derived growth mixture model solution are also described and illustrated by way of substantive example and a simulation.  相似文献   

7.
Latent profile analysis (LPA) has become a popular statistical method for modeling unobserved population heterogeneity in cross-sectionally sampled data, but very few empirical studies have examined the question of how well enumeration indexes accurately identify the correct number of latent profiles present. This Monte Carlo simulation study examined the ability of several classes of enumeration indexes to correctly identify the number of latent population profiles present under 3 different research design conditions: sample size, the number of observed variables used for LPA, and the separation distance among the latent profiles measured in Mahalanobis D units. Results showed that, for the homogeneous population (i.e., the population has k = 1 latent profile) conditions, many of the enumeration indexes used in LPA were able to correctly identify the single latent profile if variances and covariances were freely estimated. However, for a heterogeneous population (i.e., the population has k = 3 distinct latent profiles), the correct identification rate for the enumeration indexes in the k = 3 latent profile conditions was typically very low. These results are compared with the previous cross-sectional mixture modeling studies, and the limitations of this study, as well as future cross-sectional mixture modeling and enumeration index research possibilities, are discussed.  相似文献   

8.
A latent variable modeling procedure for examining whether a studied population could be a mixture of 2 or more latent classes is discussed. The approach can be used to evaluate a single-class model vis-à-vis competing models of increasing complexity for a given set of observed variables without making any assumptions about their within-class interrelationships. The method is helpful in the initial stages of finite mixture analyses to assess whether models with 2 or more classes should be subsequently considered as opposed to a single-class model. The discussed procedure is illustrated with a numerical example.  相似文献   

9.
Growth mixture models combine latent growth curve models and finite mixture models to examine the existence of latent classes that follow distinct developmental patterns. Analyses based on these models are becoming quite common in social and behavioral science research because of recent advances in computing, the availability of specialized statistical programs, and the ease of programming. In this article, we show how mixture models can be fit to examine the presence of multiple latent classes by algorithmically grouping or clustering individuals who follow the same estimated growth trajectory based on an evaluation of individual case residuals. The approach is illustrated using empirical longitudinal data along with an easy to use computerized implementation.  相似文献   

10.
This article offers different examples of how to fit latent growth curve (LGC) models to longitudinal data using a variety of different software programs (i.e., LISREL, Mx, Mplus, AMOS, SAS). The article shows how the same model can be fitted using both structural equation modeling and multilevel software, with nearly identical results, even in the case of models of latent growth fitted to incomplete data. The general purpose of this article is to provide a demonstration that integrates programming features from different software. The most immediate goal is to help researchers implement these LGC models as a useful way to test hypotheses of growth.  相似文献   

11.
This study introduces a two-part factor mixture model as an alternative analysis approach to modeling data where strong floor effects and unobserved population heterogeneity exist in the measured items. As the names suggests, a two-part factor mixture model combines a two-part model, which addresses the problem of strong floor effects by decomposing the data into dichotomous and continuous response components, with a factor mixture model, which explores unobserved heterogeneity in a population by establishing latent classes. Two-part factor mixture modeling can be an important tool for situations in which ordinary factor analysis produces distorted results and can allow researchers to better understand population heterogeneity within groups. Building a two-part factor mixture model involves a consecutive model building strategy that explores latent classes in the data for each part as well as a combination of the two-part. This model building strategy was applied to data from a randomized preventive intervention trial in Baltimore public schools administered by the Johns Hopkins Center for Early Intervention. The proposed model revealed otherwise unobserved subpopulations among the children in the study in terms of both their tendency toward and their level of aggression. Furthermore, the modeling approach was examined using a Monte Carlo simulation.  相似文献   

12.
Social scientists are frequently interested in identifying latent subgroups within the population, based on a set of observed variables. One of the more common tools for this purpose is latent class analysis (LCA), which models a scenario involving k finite and mutually exclusive classes within the population. An alternative approach to this problem is presented by the grade of membership (GoM) model, in which individuals are assumed to have partial membership in multiple population subgroups. In this respect, it differs from the hard groupings associated with LCA. The current Monte Carlo simulation study extended on prior work on the GoM by investigating its ability to recover underlying subgroups in the population for a variety of sample sizes, latent group size ratios, and differing group response profiles. In addition, this study compared the performance of GoM with that of LCA. Results demonstrated that when the underlying process conforms to the GoM model form, the GoM approach yielded more accurate classification results than did LCA. In addition, it was found that the GoM modeling paradigm yielded accurate results for samples as small as 200, even when latent subgroups were very unequal in size. Implications for practice were discussed.  相似文献   

13.
Abstract

Factor mixture models are designed for the analysis of multivariate data obtained from a population consisting of distinct latent classes. A common factor model is assumed to hold within each of the latent classes. Factor mixture modeling involves obtaining estimates of the model parameters, and may also be used to assign subjects to their most likely latent class. This simulation study investigates aspects of model performance such as parameter coverage and correct class membership assignment and focuses on covariate effects, model size, and class-specific versus class-invariant parameters. When fitting true models, parameter coverage is good for most parameters even for the smallest class separation investigated in this study (0.5 SD between 2 classes). The same holds for convergence rates. Correct class assignment is unsatisfactory for the small class separation without covariates, but improves dramatically with increasing separation, covariate effects, or both. Model performance is not influenced by the differences in model size investigated here. Class-specific parameters may improve some aspects of model performance but negatively affect other aspects.  相似文献   

14.
The purpose of this article is to demonstrate how recent methodological developments in the analysis of individual growth can inform important problems in education policy. Specifically, this article focuses on a method referred to as growth mixture modeling. Growth mixture modeling is a relatively new procedure for the analysis of longitudinal data that relaxes many of the assumptions associated with conventional growth curve modeling. In particular, growth mixture modeling tests for the existence of unique growth trajectory classes through a combination of latent class analysis and standard growth curve modeling. Antecedent predictors of the latent classes can be incorporated as well as relations from the latent classes to specific outcomes. This article applies growth mixture modeling to data from the Early Childhood Longitudinal Study-Kindergarten class of 1998-1999. The specific policy question posed in this article focuses on the estimation of latent growth trajectory classes in reading proficiency and the effects of full-day or part-day kindergarten programs on growth within reading trajectory classes. Results identify a 3-class solution corresponding to slow-developing, normal-developing, and fast-developing reading growth in children. The results further show that full-day kindergarten attendance benefits children in the slow-reading development class relative to the normal and fast-reading development class, but the effect is lessened when holding constant socioeconomic status and age of entry into kindergarten. The implications of the method for quantitative education policy analysis are also discussed.  相似文献   

15.
This simulation study focused on the power for detecting group differences in linear growth trajectory parameters within the framework of structural equation modeling (SEM) and compared the latent growth modeling (LGM) approach to the more traditional repeated-measures analysis of variance (ANOVA) approach. Several patterns of group differences in linear growth trajectories were considered. SEM growth modeling consistently showed higher statistical power for detecting group differences in the linear growth slope than repeated-measures ANOVA. For small group differences in the growth trajectories, large sample size (e.g., N > 500) would be required for adequate statistical power. For medium or large group differences, moderate or small sample size would be sufficient for adequate power. Some future research directions are discussed.  相似文献   

16.
Recent advances in statistical methodology, in particular, latent growth modeling, allow for the testing of complex models regarding developmental trends from both an inter‐ and intraindividual perspective. An example application of latent growth curve methodology, analyzing the effects of gender and parental monitoring on developmental change in adolescent alcohol consumption, is presented. Furthermore, the analyses are conducted within a cohort‐sequential design, incorporating an approach to the analysis of missing data due to attrition. Findings are discussed with particular reference to the utility of latent growth curve models for assessing developmental processes at both the inter‐and intraindividual level across a variety of behavioral domains.  相似文献   

17.
Latent growth curve models are widely used in the social and behavioral sciences to study complex developmental patterns of change over time. The trajectories of these developmental patterns frequently exhibit distinct segments in the studied variables. Latent growth models with piecewise functions for repeated measurements of variables have become increasingly popular for modeling such developmental trajectories. A major problem with using piecewise models is determining the precise location of the point where the change in the process has occurred and uncovering the related number of segments. The purpose of this paper is to introduce an optimization procedure that can be used to determine both the segments and location of the knots in piecewise linear latent growth models. The procedure is illustrated using empirical data in order to detect the number of segments and change points. The results demonstrate the capabilities of the procedure for fitting latent growth curve models.  相似文献   

18.
This Monte Carlo study investigated the impacts of measurement noninvariance across groups on major parameter estimates in latent growth modeling when researchers test group differences in initial status and latent growth. The average initial status and latent growth and the group effects on initial status and latent growth were investigated in terms of Type I error and bias. The location and magnitude of noninvariance across groups was related to the location and magnitude of bias and Type I error in the parameter estimates. That is, noninvariance in factor loadings and intercepts was associated with the Type I error inflation and bias in the parameter estimates of the slope factor (or latent growth) and the intercept factor (or initial status), respectively. As noninvariance became large, the degree of Type I error and bias also increased. On the other hand, a correctly specified second-order latent growth model yielded unbiased parameter estimates and correct statistical inferences. Other findings and implications on future studies were discussed.  相似文献   

19.
Estimating models within the mixture model framework, like latent growth mixture modeling (LGMM) or latent class growth analysis (LCGA), involves making various decisions throughout the estimation process. This has led to a wide variety in how results of latent trajectory analysis are reported. To overcome this issue, using a 4-round Delphi study, we developed Guidelines for Reporting on Latent Trajectory Studies (GRoLTS). The purpose of GRoLTS is to present criteria that should be included when reporting the results of latent trajectory analysis across research fields. We have gone through a systematic process to identify key components that, according to a panel of experts, are necessary when reporting results for trajectory studies. We applied GRoLTS to 38 papers where LGMM or LCGA was used to study trajectories of posttraumatic stress after a traumatic event.  相似文献   

20.
This article presents several longitudinal mediation models in the framework of latent growth curve modeling and provides a detailed account of how such models can be constructed. Logical and statistical challenges that might arise when such analyses are conducted are also discussed. Specifically, we discuss how the initial status (intercept) and change (slope) of the putative mediator variable can be appropriately included in the causal chain between the independent and dependent variables in longitudinal mediation models. We further address whether the slope of the dependent variable should be controlled for the dependent variable's intercept to improve the conceptual relevance of the mediation models. The models proposed are illustrated by analyzing a longitudinal data set. We conclude that for certain research questions in developmental science, a multiple mediation model where the dependent variable's slope is controlled for its intercept can be considered an adequate analytical model. However, such models also show several limitations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号