首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
用导数法求函数的极值,是求极值基本方法,在解决这类问题时,如果对法则、定理一知半解或理解不透,很容易造成极值点的遗漏.可导函数y=f(x)在某一点x_0处取得极值的必要条件是这一点x_0的导数f′(x_0)=0.因此求可导函数y=f(x)的极值可以按照下列步骤进行: ①先求函数y=f(x)的导数f′(x); ②令f′(x)=0求得根x_0; ③在x_0附近左右两侧判断f′(x_0)的符号,左正右负为极大值点,左负右正为极小值点.  相似文献   

2.
能取等号吗?     
函数 y=f(x)在 x=x_0处有极值,则它的导数 f′(x)在这点的函数值为零,即 f′(x_0)=0,反过来,函数 y=f(x)的导数在某点的函数值为零时,这点却不一定是函数的极值点.因此,我们必须具体问题具体分析.例1 已知 b>-1,c>0,函数 f(x)=x b 的图象与函数 g(x)=x~2 bx c 的图像相切.(1)求 b 与 c 的关系(用 c 表示 b)(2)设函数 F(x)=f(x)g(x)在(-∞, ∞)内有极值点,求 c 的取值范围.分析:(1)(略);(2)函数 F(x)=f(x)·g(x)在(-∞, ∞)内有极值点,即存在 x_0使F′(x_0)=0,亦即一元二次方程 F′(x)=0有实  相似文献   

3.
设y=f(x)为可导函数。①在某个区间内,如果f(x)>0,则f(x)为增函数;如果f′(x)<0,则f(x)为减函数,反之亦然。②函数f(x)在某点取得极值的充要条件是该点的导数为零且该点两侧的导数异号。③函数f(x)在点x_0处的导数f′(x_0)是曲线y=f(x)在点(x_0,f(x_0))处切线的斜率。运用上述性质可解决下面几类问题。  相似文献   

4.
王为刚 《成才之路》2013,(18):77-77
导数问题中的极值点问题、由单调性求参数范围问题、曲线的切线问题、利用导数画函数图像及求值域问题等常会出现错误。一、极值点的判断问题例1(2012年江苏省高考题第18题):若函数y=f(x)在x=x0处取得极大值或极小值,则x0称为函数y=f(x)的极值点。已知a,b是实数,1和  相似文献   

5.
刘开军 《职教论坛》2003,(20):62-62
充分条件、必要条件、充要条件是研究命题条件和结论的相互关系时常用的数学术语,下面在微分中说明这些条件的应用。一、充分条件假言判断“若A则B”为真,则称条件A是B的充分条件。简言之,“有此则必然,无此未必不然”。例1若函数y=f(x)在点x0有极值,且f(x0)存在,则函数y=f(x)在点x0的导数为零,即f’(x0)=0。分析很明显,当函数y=f(x)在点x0有极值且导数存在时,根据导数的几何意义,函数所表示的曲线在该点的切线平行于x轴,即有f’(x0)=0。但倒过来说,“若函数y=f(x)在点x0的导数为零,则函数y=f(x)在点x0有极值”就不一定成立了。因为使y=f(…  相似文献   

6.
最近,在北师大版教材《选修2.2》第三章导数应用的教学中,有两处颇具争议的知识点,会误导学生.本文展现出来,以期加以修正. 误导一 极值点一定是导数为0的点 教材第61页归纳的求极值点的步骤:“一般情况下,我们可以通过如下步骤求出函数f(x)的极值点,首先求导,其次解方程f(x0)=0,然后检验x0,左右导数符号来判断x0是否为函数极值点”,从教材归纳求函数极值点的步骤可看出,“函数的极值点一定是导数为0的点!”  相似文献   

7.
<正>高中数学中导数像是一枚宝贵的工具解决着许多数学问题。学习过程中常常利用导数来求曲线的切线方程,讨论函数的单调性,极值与求最值问题等。一、利用导数求曲线的切线方程因为函数y=f(x)在x=x_0处的导数表示曲线在点P(x_0,f(x_0))处切线的斜率,所以曲线y=f(x)在点P(x_0,f(x_0))处的切线方程可求得。若已知曲线过点P(x_0,f(x_0)),求曲线过点P的切线,则需分点P(x_0,f(x_0))是切  相似文献   

8.
1导函数f′(x)在x=x0处的极限与函数y=f(x)在x=x0处的可导性定理1若函数f(x)在(a,b)内连续,在(a,b)中除点x0外处处可导,且li mx→x0f′(x)存在,那么函数y=f(x)在x=x0处可导,且f′(x0)=lxi→mx0f′(x).证明:任取异于x0的x∈(a,b),在[x0,x]或[x,x0]上应用lagrange中值定理,有f(xx  相似文献   

9.
导数是新教材第三册(选修Ⅱ)中的新添内容之一,教材主要介绍了导数在解题中判断函数单调及求函数极值与最值的应用,本文结合具体实例,就导数在解题中其它方面的几点应用作一下归纳,仅供读者参考.1判断函数图象例1设函数y=f(x)在定义域内可导,其图象如右图所示,则其导函数y=f′(x)的图象为()分析由y=f(x)的图象可以看出,当x<0时,y=f(x)是单调递增函数,由此可得:对任意x<0,f′(x)>0恒成立;所以可以排除(A)、(C);又因为x>0时,y=f(x)有两个极值点,所以x>0时,f′(x)=0有两个不等实根,且在两根左右两侧,f′(x)符号相反,因此答案应选(D).2化简例2…  相似文献   

10.
在判断函数的单调性和求函数的极值时,常常需要判断其导函数在某区间的符号,通常的方法是解不等式,但往往很麻烦困难。如例1 求函数f(x)=e~x+e~(-x)+2cosx的极值。解 f′(x)=e~x-e~(-x)-2sinx,解方程 e~x-e~(-x)-2sinx=0得唯一的驻点为x=0,此时f′(x)在x=0附近的函数值符号不易确定,需求高阶导数才能能判定f(x)在x=0处是否取极值。又如  相似文献   

11.
<正>一、求极值利用可导函数求函数极值的基本方法:设函数y=f(x)在点x_0处连续且f'(x)=0。若在点x_0附近左侧f'(x)>0,右侧f'(x)<0,则f(x_0)为函数的极大值;若在点x_0附近左侧f'(x)<0,右侧f'(x)>0,则f(x_0)为函数的极小值。  相似文献   

12.
一、单项选择题 对此类型题只要能正确理解与熟练掌握有关的基本概念、定理、性质、重要极限公式与结论即可。 1.下列极限计算正确的有( ) 分析:首先我们来看公式的特点:分式的分子恰为分母式的正弦,且两者都在所考虑的过程中为无穷小,其比值的权限为1.然后再看公式的特点:它恰好是1与无穷小之和的该无穷小的倒置的幂,其极限值为e.故此题中计算正确的是B.2.下面结论正确的有( )A.X_0是f(x)的驻点一定是f(x)的极值点; B.x_0是f(x)极值,则点,则一定是f(x)的驻点; C.f(x)在x_0处可导,则一定在x_0处连续; D.f(x)在x_0处连续,则一定在x_0处可导。 此题要明确以下两点: (1)极值点与驻点的关系:函数的权值点不一定是驻点,函数的驻点也不一定是极值点,但可导函数的极值点必是驻点。  相似文献   

13.
“导数”这部分内容,是高中数学新教材第三册新增内容.它为研究函数性质提供了强有力的工具,特别是借助导数,对可导函数的单调性能进行透彻的分析,为求函数的极值、最值提倡的一种简捷方法.本文例谈导数在研究函数性质中的应用.1利用导数判定函数的单调性、极值、最值例1(04年天津高考题)已知3()fxax= (0)cxda 故荝上的奇函数,当1x=时,()fx取得极值2-,(I)求()fx的单调区间和极大值;(II)对任意12,(1,1)xx?,不等式1|()fx-2()|4fx<恒成立.分析(I)∵()fx是奇函数,xR,∴(0)0f=,∴0d=.因此3()fxaxcx= ,2'()3fxaxc= .由条件(1)2f=-为()fx的极值必…  相似文献   

14.
<正>导数在高中数学中十分重要,对于函数等方面问题的求解提供了一种新的解决途径,利用导数来对函数最值、极值进行求解比以往解题方法更为便捷,这不仅有利于学生提高函数问题求解速度,而且有利于学生对于函数知识内容进一步地掌握。一、函数极值概述1.函数极值定义和判断方法函数极值包括函数极大值和函数极小值,函数极大值是指函数f(x)在点x0处有定义,如果当x0附近所有的点都满足f(x)  相似文献   

15.
导数是高中教材的新增内容,它与函数极值、单调性、切线、不等式、应用性等问题的综合题是近几年高考新课程卷的热点内容.下面对其考点进行解析,希望能对同学们了解新课程卷考点变化和发展趋势,作好复习备考工作有所启示.考点1 导数定义、法则直接应用例1 (2003年新课程卷江苏高考题)已知a>0,n为正整数,设y=(x-a)n,证明y′=n(x-a)n-1.解析:如果函数y=f(x)在某点处的增量Δy与自变量Δx→0增量的比值,当Δx→0的极限存在,则称此极限为函数y=f(x)在某点处的导数.高考常借助函数在某点是否可导的判断、求导公式的证明等问题考查导数定义、法…  相似文献   

16.
极限概念是贯穿整个微积分的最重要、最基本的概念,极限的理论是微积分的基础,极限的方法是微积分最基本的方法。正确理解和使用导数定义中的极限式,可以加深对极限概念的理解。请看下面的例题:设函数f(x)在x0处可导,则极限limh→0f(x0 h)-f(x0-h)2h=limh→0f(x 2h)-f(x)2h(令x  相似文献   

17.
用二阶偏导数来判定函数f(x,y)在其驻点(x,y_0)处的极值,有时可能有判别式f_(xy)~2(x_0,y_0)-f_(xx)(X_0,y)·f_y(x,y_0)等于零的情况.这时,原来的判别法失效,从而需要作出进一步的考察.为此,本文特给出一种利用一般的高阶偏导数的判别方法.设函数f(x,y)在点(x,y_0)处可展开成n阶泰勒公式,并将其写成△f=P(h,k)+ε.式中P_n(h,k)=sum from m=1 to n(1/(m+1)!)(h((?)/(?)x)+(k(?)/(?)y))~(m 1)f(x,y_0);当ρ趋于零时ε趋于零.同时还设函数f(x,y)在点(x,y_0)处所有阶数不大于某个正整数N的偏导数都等于零,或在点(x,y_0)的某个邻域内所有阶数大于N+1的偏导数都恒等于零.那末,二元函数极值的高阶偏导数判别法可简单地归结为:若P_N(h,k)恒正或恒负,则f(x,y)在点(x_0,y_0)取得极值;若P_N(h,k)有正有负,则f(x,y)在点(x_0,y_0)处不取极值.  相似文献   

18.
<正>导数是高考的必考知识点之一,其主要应用是求函数的单调性、极值和曲线的切线方程,本文主要讨论导数与切线方程。函数f(x)在点x_0处的导数f′(x_0)的几何意义是过曲线y=f(x)上点(x_0,f(x_0))的切线的斜率。函数在某点处的导数是函数相应曲线在该点处的切线的斜率。例1在平面直角坐标系xOy中,若曲线y=ax2+b/x(a,b为常数)过点P(2,-5),且该曲线在点P处的切线与直线7x+  相似文献   

19.
欧阳云 《考试周刊》2012,(85):61-62
摘要:判定函数f(x)在x0处是否取得极值有两个充分条件判定定理.本文讨论了函数f(x)在x0处存在三阶导数,并且x0处的一阶导数和二阶导数都为零时,如何利用x0处的三阶导数来判定f(x)在x0处没有极值.  相似文献   

20.
本文以具体实例阐述了利用导数研究函数极值要注意检验,论证了“x0是函f(x)的变号零点就是极值点,是函数f(x)的不变号零点便不是极值点.”  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号