首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
We present an integrated microfluidic chip for detection of β-amyloid (Aβ) peptides. Aβ peptides are major biomarkers for the diagnosis of Alzheimer''s disease (AD) in its early stages. This microfluidic device consists of three main parts: (1) An immunocapture microcolumn based on self-assembled magnetic beads coated with antibodies specific to Aβ peptides, (2) a nano-porous membrane made of photopolymerized hydrogel for preconcentration, and (3) a microchip electrophoresis (MCE) channel with fluorescent detection. Sub-milliliter sample volume is either mixed off-chip with antibody coated magnetic beads and injected into the device or is injected into an already self-assembled column of magnetic beads in the microchannel. The captured peptides on the beads are then electrokinetically eluted and re-concentrated onto the nano-membrane in a few nano-liters. By integrating the nano-membrane, total assay time was reduced and also off-chip re-concentration or buffer exchange steps were not needed. Finally, the concentrated peptides in the chip are separated by electrophoresis in a polymer-based matrix. The device was applied to the capture and MCE analysis of differently truncated peptides Aβ (1–37, 1–39, 1–40, and 1–42) and was able to detect as low as 25 ng of synthetic Aβ peptides spiked in undiluted cerebrospinal fluid (CSF). The device was also tested with CSF samples from healthy donors. CSF samples were fluorescently labelled and pre-mixed with the magnetic beads and injected into the device. The results indicated that Aβ1-40, an important biomarker for distinguishing patients with frontotemporal lobe dementia from controls and AD patients, was detectable. Although the sensitivity of this device is not yet enough to detect all Aβ subtypes in CSF, this is the first report on an integrated or semi-integrated device for capturing and analyzing of differently truncated Aβ peptides. The method is less demanding and faster than the conventional Western blotting method currently used for research.  相似文献   

2.
The separation of target nucleic acid sequences from biological samples has emerged as a significant process in today''s diagnostics and detection strategies. In addition to the possible clinical applications, the fundamental understanding of target and sequence specific hybridization on surface modified magnetic beads is of high value. In this paper, we describe a novel microfluidic platform that utilizes a mobile magnetic field in static microfluidic channels, where single stranded DNA (ssDNA) molecules are isolated via nucleic acid hybridization. We first established efficient isolation of biotinylated capture probe (BP) using streptavidin-coated magnetic beads. Subsequently, we investigated the hybridization of target ssDNA with BP bound to beads and explained these hybridization kinetics using a dual-species kinetic model. The number of hybridized target ssDNA molecules was determined to be about 6.5 times less than that of BP on the bead surface, due to steric hindrance effects. The hybridization of target ssDNA with non-complementary BP bound to bead was also examined, and non-specific hybridization was found to be insignificant. Finally, we demonstrated highly efficient capture and isolation of target ssDNA in the presence of non-target ssDNA, where as low as 1% target ssDNA can be detected from mixture. The microfluidic method described in this paper is significantly relevant and is broadly applicable, especially towards point-of-care biological diagnostic platforms that require binding and separation of known target biomolecules, such as RNA, ssDNA, or protein.  相似文献   

3.
Determination of amyloid β (Aβ) isoforms and in particular the proportion of the Aβ 1-42 isoform in cerebrospinal fluid (CSF) of patients suspected of Alzheimer's disease might help in early diagnosis and treatment of that illness. Due to the low concentration of Aβ peptides in biological fluids, a preconcentration step prior to the detection step is often necessary. This study utilized on-chip immunoprecipitation, known as micro-immunoprecipitation (μIP). The technique uses an immunosorbent (IS) consisting of magnetic beads coated with specific anti-Aβ antibodies organized into an affinity microcolumn by a magnetic field. Our goal was to thoroughly describe the critical steps in developing the IS, such as selecting the proper beads and anti-Aβ antibodies, as well as optimizing the immobilization technique and μIP protocol. The latter includes selecting optimal elution conditions. Furthermore, we demonstrate the efficiency of anti-Aβ IS for μIP and specific capture of 5 Aβ peptides under optimized conditions using various subsequent analytical methods, including matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), capillary electrophoresis, microchip electrophoresis, and immunoblotting. Synthetic Aβ peptides samples prepared in buffer and spiked in human CSF were analyzed. Finally, on-chip immunoprecipitation of Aβ peptides in human CSF sample was performed.  相似文献   

4.
Nam J  Lim H  Kim C  Yoon Kang J  Shin S 《Biomicrofluidics》2012,6(2):24120-2412010
This study presents a method for density-based separation of monodisperse encapsulated cells using a standing surface acoustic wave (SSAW) in a microchannel. Even though monodisperse polymer beads can be generated by the state-of-the-art technology in microfluidics, the quantity of encapsulated cells cannot be controlled precisely. In the present study, mono-disperse alginate beads in a laminar flow can be separated based on their density using acoustophoresis. A mixture of beads of equal sizes but dissimilar densities was hydrodynamically focused at the entrance and then actively driven toward the sidewalls by a SSAW. The lateral displacement of a bead is proportional to the density of the bead, i.e., the number of encapsulated cells in an alginate bead. Under optimized conditions, the recovery rate of a target bead group (large-cell-quantity alginate beads) reached up to 97% at a rate of 2300 beads per minute. A cell viability test also confirmed that the encapsulated cells were hardly damaged by the acoustic force. Moreover, cell-encapsulating beads that were cultured for 1 day were separated in a similar manner. In conclusion, this study demonstrated that a SSAW can successfully separate monodisperse particles by their density. With the present technique for separating cell-encapsulating beads, the current cell engineering technology can be significantly advanced.  相似文献   

5.
Determination of amyloid β (Aβ) isoforms and in particular the proportion of the Aβ 1-42 isoform in cerebrospinal fluid (CSF) of patients suspected of Alzheimer’s disease might help in early diagnosis and treatment of that illness. Due to the low concentration of Aβ peptides in biological fluids, a preconcentration step prior to the detection step is often necessary. This study utilized on-chip immunoprecipitation, known as micro-immunoprecipitation (μIP). The technique uses an immunosorbent (IS) consisting of magnetic beads coated with specific anti-Aβ antibodies organized into an affinity microcolumn by a magnetic field. Our goal was to thoroughly describe the critical steps in developing the IS, such as selecting the proper beads and anti-Aβ antibodies, as well as optimizing the immobilization technique and μIP protocol. The latter includes selecting optimal elution conditions. Furthermore, we demonstrate the efficiency of anti-Aβ IS for μIP and specific capture of 5 Aβ peptides under optimized conditions using various subsequent analytical methods, including matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), capillary electrophoresis, microchip electrophoresis, and immunoblotting. Synthetic Aβ peptides samples prepared in buffer and spiked in human CSF were analyzed. Finally, on-chip immunoprecipitation of Aβ peptides in human CSF sample was performed.  相似文献   

6.
In the quest to create a low-power portable lab-on-a-chip system, we demonstrate the specific binding and concentration of human CD8+ T-lymphocytes on an electrowetting-on-dielectric (EWOD)-based digital microfluidic platform using antibody-conjugated magnetic beads (MB-Abs). By using a small quantity of nonionic surfactant, we enable the human cell-based assays with selective magnetic binding on the EWOD device in an air environment. High binding efficiency (~92%)of specific cells on MB-Abs is achieved due to the intimate contact between the cells and the magnetic beads (MBs) produced by the circulating flow within the small droplet. MBs have been used and cells manipulated in the droplets actuated by EWOD before; reported here is a cell assay of a clinical protocol on the EWOD device in air environment. The present technique can be further extended to capture other types of cells by suitable surface modification on the MBs.  相似文献   

7.
An automated, disk-based, enzyme-linked immunosorbent assay (ELISA) system is presented in this work. Magnetic beads were used as the antibody carriers to improve the assay sensitivity and shorten the reaction time. The magnetic module integrated on the system is capable of controlling the magnetic beads to either move in the incubation stage or immobilize at a specific location during washing stage. This controlling mechanism utilizes a passive controlling approach so that it can be performed through disk spinning without the need of active control from external devices. The movement of the magnetic beads was investigated and the optimal rotational speed was found to be related to the ratio of the processing time to the cycle time of the magnetic beads. Comparing to ELISA conducted on microtiter plates, similar test results could be achieved by the disk-based ELISA but the entire protocol can be finished automatically within 45 min with much less reagent consumption.  相似文献   

8.
Recent years have witnessed a strong trend towards analysis of single-cells. To access and handle single-cells, many new tools are needed and have partly been developed. Here, we present an improved version of a single-cell printer which is able to deliver individual single cells and beads encapsulated in free-flying picoliter droplets at a single-bead efficiency of 96% and with a throughput of more than 10 beads per minute. By integration of acoustophoretic focusing, the cells could be focused in x and y direction. This way, the cells were lined-up in front of a 40 μm nozzle, where they were analyzed individually by an optical system prior to printing. In agreement with acoustic simulations, the focusing of 10 μm beads and Raji cells has been achieved with an efficiency of 99% (beads) and 86% (Raji cells) to a 40 μm wide center region in the 1 mm wide microfluidic channel. This enabled improved optical analysis and reduced bead losses. The loss of beads that ended up in the waste (because printing them as single beads arrangements could not be ensured) was reduced from 52% ± 6% to 28% ± 1%. The piezoelectric transducer employed for cell focusing could be positioned on an outer part of the device, which proves the acoustophoretic focusing to be versatile and adaptable.  相似文献   

9.
Aptamers are promising cell targeting ligands for several applications such as for the diagnosis, therapy, and drug delivery. Especially, in the field of regenerative medicine, stem cell specific aptamers have an enormous potential. Using the combinatorial chemistry process SELEX (Systematic Evolution of Ligands by Exponential enrichment), aptamers are selected from a huge oligonucleotide library consisting of approximately 1015 different oligonucleotides. Here, we developed a microfluidic chip system that can be used for the selection of cell specific aptamers. The major drawbacks of common cell-SELEX methods are the inefficient elimination of the unspecifically bound oligonucleotides from the cell surface and the unspecific binding/uptake of oligonucleotides by dead cells. To overcome these obstacles, a microfluidic device, which enables the simultaneous performance of dielectrophoresis and electrophoresis in the same device, was designed. Using this system, viable cells can be selectively assembled by dielectrophoresis between the electrodes and then incubated with the oligonucleotides. To reduce the rate of unspecifically bound sequences, electrophoretic fields can be applied in order to draw loosely bound oligonucleotides away from the cells. Furthermore, by increasing the flow rate in the chip during the iterative rounds of SELEX, the selection pressure can be improved and aptamers with higher affinities and specificities can be obtained. This new microfluidic device has a tremendous capability to improve the cell-SELEX procedure and to select highly specific aptamers.  相似文献   

10.
A variety of mathematical models may be used to analyse plastic deformation during a metal-forming process. One of these methods—limit analysis—places the estimate of required power between an upper bound and a lower bound. The upper and lower bound analyses are designed so that the actual power or forming stress requirement is less than that predicted by the upper bound and greater than that predicted by the lower bound. Finding a lower upper bound and a higher lower bound reduces the uncertainty of the actual power requirement. Upper and lower bounds will permit the determination of such quantities as required forces, limitations on the process, optimal die design, flow patterns, and prediction and prevention of defects.Fundamental to the development of both upper bound and lower bound solutions is the division of the body into zones. For each of the zones there is written either a velocity field (upper bound) or a stress field (lower bound). A better choice of zones and fields brings the calculated values closer to actual values.In the present work, both upper and lower bound solutions are presented for axisymmetric flow through conical converging dies. For the upper bound triangular velocity fields have been solved and compared to previously published work on spherical velocity fields. It is found that each type provides a lower solution over a part of the range of process variables. A previously published lower bound solution for axisymmetric flow is refined.  相似文献   

11.
Affinity reagents recognizing biomarkers specifically are essential components of clinical diagnostics and target therapeutics. However, conventional methods for screening of these reagents often have drawbacks such as large reagent consumption, the labor-intensive or time-consuming procedures, and the involvement of bulky or expensive equipment. Alternatively, microfluidic platforms could potentially automate the screening process within a shorter period of time and reduce reagent and sample consumption dramatically. It has been demonstrated recently that a subpopulation of tumor cells known as cancer stem cells possess high drug resistance and proliferation potential and are regarded as the main cause of metastasis. Therefore, a peptide that recognizes cancer stem cells and differentiates them from other cancer cells will be extremely useful in early diagnosis and target therapy. This study utilized M13 phage display technology to identify peptides that bind, respectively, to colon cancer cells and colon cancer stem cells using an integrated microfluidic system. In addition to positive selection, a negative selection process was integrated on the chip to achieve the selection of peptides of high affinity and specificity. We successfully screened three peptides specific to colon cancer cells and colon cancer stem cells, namely, HOLC-1, HOLC-2, and COLC-1, respectively, and their specificity was measured by the capture rate between target, control, and other cell lines. The capture rates are 43.40 ± 7.23%, 45.16 ± 7.12%, and 49.79 ± 5.34% for colon cancer cells and colon cancer stem cells, respectively, showing a higher specificity on target cells than on control and other cell lines. The developed technique may be promising for early diagnosis of cancer cells and target therapeutics.  相似文献   

12.
In this study, a microfluidic process is proposed for preparing monodisperse micrometer-sized hydrogel beads. This process utilizes non-equilibrium aqueous droplets formed in a polar organic solvent. The water-in-oil droplets of the hydrogel precursor rapidly shrunk owing to the dissolution of water molecules into the continuous phase. The shrunken and condensed droplets were then gelled, resulting in the formation of hydrogel microbeads with sizes significantly smaller than the initial droplet size. This study employed methyl acetate as the polar organic solvent, which can dissolve water at 8%. Two types of monodisperse hydrogel beads—Ca-alginate and chitosan—with sizes of 6–10 μm (coefficient of variation < 6%) were successfully produced. In addition, we obtained hydrogel beads with non-spherical morphologies by controlling the degree of droplet shrinkage at the time of gelation and by adjusting the concentration of the gelation agent. Furthermore, the encapsulation and concentration of DNA molecules within the hydrogel beads were demonstrated. The process presented in this study has great potential to produce small and highly concentrated hydrogel beads that are difficult to obtain by using conventional microfluidic processes.  相似文献   

13.
The phenomenon of self-rotation observed in naturally and artificially pigmented cells under an applied linearly polarized alternating current (non-rotating) electrical field has been investigated. The repeatable and controllable rotation speeds of the cells were quantified and their dependence on dielectrophoretic parameters such as frequency, voltage, and waveform was studied. Moreover, the rotation behavior of the pigmented cells with different melanin content was compared to quantify the correlation between self-rotation and the presence of melanin. Most importantly, macrophages, which did not originally rotate in the applied non-rotating electric field, began to exhibit self-rotation that was very similar to that of the pigmented cells, after ingesting foreign particles (e.g., synthetic melanin or latex beads). We envision the discovery presented in this paper will enable the development of a rapid, non-intrusive, and automated process to obtain the electrical conductivities and permittivities of cellular membrane and cytoplasm in the near future.  相似文献   

14.
Conventionally, isotachophoresis (ITP) is used for separation of ionic samples according to their electrophoretic mobilities. We demonstrate that the scope of ITP applications may be extended toward particle concentration and separation. Owing to the distributions of electrolyte concentration and electric field inside a transition zone between two electrolytes, a number of different forces act on a small particle. As far as possible, we provide estimates for the order of magnitude of these forces and analyze their scaling with the particle size and the electric-field strength. Furthermore, we experimentally demonstrate that polymer beads of 5 μm diameter dispersed in a high mobility “leading” electrolyte are picked up and carried along by an ITP transition zone which is formed with a low mobility “trailing” electrolyte. By studying the particle positions and trajectories, we show that impurities in the electrolytes play a significant role in the experiments. Additionally, it is experimentally shown that different types of beads can be separated at an ITP transition zone. In particular, beads of 1 μm diameter are not carried along with the transition zone, in contrast to the 5 μm beads. The presented technique thus adds to the portfolio of electrokinetic transport, concentration, and separation methods in microfluidics.  相似文献   

15.
Cell encapsulation technology is a promising strategy applicable to tissue engineering and cell therapy. Many advanced microencapsulation chips that function via multiple syringe pumps have been developed to generate mono-disperse hydrogel beads encapsulating cells. However, their operation is difficult and only trained microfluidic engineers can use them with dexterity. Hence, we propose a microfluidic manifold system, driven by a single syringe pump, which can enable the setup of automated flow sequences and generate highly mono-disperse alginate beads by minimizing disturbances to the pump pressure. The encapsulation of P19 mouse embryonic carcinoma cells and embryonic body formation are demonstrated to prove the efficiency of the proposed system.  相似文献   

16.
A simple method for micromanipulation of liquids and∕or small groups of cells is presented in this study. Microfabricated sieving structures composed of PDMS (polydimethylsiloxane) were used to segregate aqueous solutions. This microfluidic valving scheme was an application of Cassie-Baxter wetting and was termed "virtual walls" as a nonsolid barrier exists at an air∕water interface. The manipulation of the virtual-air-wall valve was accomplished by controlling the strength of surface-tension and hydrostatic-pressure forces. Virtual walls with a range of feature sizes were designed and characterized by monitoring air and water displacement in response to hydrostatic pressure. Thresholds for the virtual-air-wall valves to be turned on or off were quantified. The walls could also be formed or dissipated by the focused microbeam of a pulsed laser. As an illustration of the virtual wall utility, a series of microfluidic applications were demonstrated. First, the capability of virtual walls to temporarily segregate liquids was integrated into a device utilized to establish a chemical gradient. In a second application, the arraying of nonadherent cells within individual aqueous cavities created by the virtual walls was demonstrated. Individual cells were also released from the cavities on demand using a focused microbeam. The virtual walls were simple and easy-to-fabricate without the requirement for surface treatment or precision alignment, and should find usage in bioanalytical applications.  相似文献   

17.
This paper reports the use of a recent composite material, noted hereafter i-PDMS, made of carbonyl iron microparticles mixed in a PolyDiMethylSiloxane (PDMS) matrix, for magnetophoretic functions such as capture and separation of magnetic species. We demonstrated that this composite which combine the advantages of both components, can locally generate high gradients of magnetic field when placed between two permanent magnets. After evaluating the magnetic susceptibility of the material as a function of the doping ratio, we investigated the molding resolution offered by i-PDMS to obtain microstructures of various sizes and shapes. Then, we implemented 500 μm i-PDMS microstructures in a microfluidic channel and studied the influence of flow rate on the deviation and trapping of superparamagnetic beads flowing at the neighborhood of the composite material. We characterized the attraction of the magnetic composite by measuring the distance from the i-PDMS microstructure, at which the beads are either deviated or captured. Finally, we demonstrated the interest of i-PDMS to perform magnetophoretic functions in microsystems for biological applications by performing capture of magnetically labeled cells.  相似文献   

18.
Immunoassay is one of the important applications of microfluidic chips and many methodologies were reported for decreasing sample∕reagent volume, shortening assay time, and so on. Micro-enzyme-linked immunosorbent assay (micro-ELISA) is our method that utilizes packed microbeads in the microfluidic channel and the immunoreactions are induced on the beads surface. Due to the large surface-to-volume ratio and small analytical volume, excellent performances have been verified in assay time and sample∕reagent volume. In order to realize the micro-ELISA, one of the important processes is the immobilization of antibody on the beads surface. Previously, the immobilization process was performed in a macroscale tube by physisorption of antibody, and long time (2 h) and large amount of antibody (or high concentration) were required for the immobilization. In addition, the processes including the reaction and washing were laborious, and changing the analyte was not easy. In this research, we integrated the immobilization process into a microfluidic chip by applying the avidin-biotin surface chemistry. The integration enabled very fast (1 min) immobilization with very small amount of precious antibody consumption (100 ng) for one assay. Because the laborious immobilization process can be automatically performed on the microfluidic chip, ELISA method became very easy. On-demand immunoassay was also possible just by changing the antibodies without using large amount of precious antibodies. Finally, the analytical performance was investigated by measuring C-reactive protein and good performance (limit of detection <20 ng∕ml) was verified.  相似文献   

19.
Two microfluidic systems have been developed for specific analysis of L-glutamate in food based on substrate recycling fluorescence detection. L-glutamate dehydrogenase and a novel enzyme, D-phenylglycine aminotransferase, were covalently immobilized on (i) the surface of silicon microchips containing 32 porous flow channels of 235 μm depth and 25 μm width and (ii) polystyrene Poros™ beads with a particle size of 20 μm. The immobilized enzymes recycle L-glutamate by oxidation to 2-oxoglutarate followed by the transfer of an amino group from D-4-hydroxyphenylglycine to 2-oxoglutarate. The reaction was accompanied by reduction of nicotinamide adenine dinucleotide (NAD+) to NADH, which was monitored by fluorescence detection (εex=340 nm, εem=460 nm). First, the microchip-based system, L-glutamate was detected within a range of 3.1–50.0 mM. Second, to be automatically determined, sequential injection analysis (SIA) with the bead-based system was investigated. The bead-based system was evaluated by both flow injection analysis and SIA modes, where good reproducibility for L-glutamate calibrations was obtained (relative standard deviation of 3.3% and 6.6%, respectively). In the case of SIA, the beads were introduced and removed from the microchip automatically. The immobilized beads could be stored in a 20% glycerol and 0.5 mM ethylenediaminetetraacetic acid solution maintained at a pH of 7.0 using a phosphate buffer for at least 15 days with 72% of the activity remaining. The bead-based system demonstrated high selectivity, where L-glutamate recoveries were between 91% and 108% in the presence of six other L-amino acids tested.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号