首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
关于直线和圆锥曲线相交所得弦的中点的有关问题 ,在高考试题中频繁出现 ,诸如平行弦的中点问题 ,过定点的弦的中点问题 ,弦中点的性质问题等等 .由此还可以派生出一系列相关问题 ,如轨迹、曲线方程、弦长、定点坐标、最值、取值范围等等 .关于这些问题的求解 ,题型不同 ,方法也不尽相同 .本文将探讨处理圆锥曲线弦的中点问题的三种行之有效的方法 ,并分类解析这些方法在各类问题中的应用 .一、韦达定理法设直线 l与某圆锥曲线 C相交所得之弦为 P1P2 ,联立直线 l的方程与圆锥曲线 C的方程 ,消去 x(或 y) ,则得到一个一元二次方程 ,根据韦…  相似文献   

2.
用“代点法”解直线与曲线的相交弦问题西安冶金机械厂中学王玉杰解析几何中.曲线的方程和方程的曲线的定义,为设点、代点提供厂理论依据.当直线与曲线的相交弦的小点恰为坐标原点.或中点弦的斜率已知(或可用有关参数表示).或相交弦经过定点时,则该相交弦的端点的...  相似文献   

3.
刘旻 《考试》2009,(11)
直线与圆锥曲线的位置关系中有关弦的问题主要有:相交弦、中点弦、焦点弦、切点弦等,它们都是高考的热点,其中,中点弦问题尤为重要。一、求曲线方程1.求中点弦所在直线方程  相似文献   

4.
<正> 求过定点的双曲线的中点弦问题,通常有下面两种方法: (1)点差法,即设出弦的两端点的坐标代入双曲线方程后相减,得到弦中点坐标与弦所在直线斜率的关系,从而求出直线方程. (2)联立法,即将直线方程与双曲线方程联立,利用韦达定理与  相似文献   

5.
解过定点的双曲线的中点弦问题,通常有下面两种方法: (1)点差法,即设出弦的两端点的坐标代入双曲线方程后相减,得到弦中点坐标与弦所在直线的斜率的关系,从而求出直线方程. (2)联立法,即将直接方程与双曲线方程联立,利用韦达定理与判别式求解.  相似文献   

6.
蒋邕平 《中学理科》2009,(12):26-28,36
解析几何中的直线与曲线的关系一直是超级热点,而中点及其相关问题更是经久不衰.这里将对中点弦的存在域给出直观图示,并导出神奇快捷的中点弦方程、弦中点轨迹方程等公式,使解题事半功倍.  相似文献   

7.
高中《解析几何》中有不少涉及直线被圆锥曲线所截得的弦即相交弦的问题。求相交弦的中点轨迹问题通常分以下两种情形考虑。 1.选取非中点的已知点为直线通过的定点。这时的解法通常是:设出通过已知点的直线的标准参数方程,并代入圆锥曲线方  相似文献   

8.
与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题.解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解.若设直线与圆锥曲线的交点(弦的端点)坐标为A(x1,y1)、B(x2,y2),将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB的中点和斜率有关的式子,可以大大减少运算量.我们称这种代点作差的方法为"点差法".一、以定点为中点的弦所在直线的方程例1过椭圆x2/16+y2/4=1内一点M(2,1)引一条弦,使弦被M点平分,求这条弦所在直线的方程.  相似文献   

9.
在解析几何中,中点弦问题是一个很常见很重要的问题.中点弦问题通常用“点差法”求解,也可以列方程组,用韦达定理求解.反过来,如果弦满足某些条件(斜率是定值、经过定点或弦长为定值等),与两条相交直线都相交的弦的中点的轨迹方程是什么?轨迹是什么?这是一个值得探究的问题.  相似文献   

10.
直线与圆锥曲线相交所得弦中点问题,是解析几何中的重要内容之一,也是高考的一个热点问题.这类问题一般有以下三种类型:(1)求中点弦所在直线方程问题;(2)求弦中点的轨迹方程问题;(3)求弦中点的坐标问题.其解  相似文献   

11.
<正>直线与圆锥曲线相交所得弦的中点问题是解析几何中的重要内容之一,也是高考的热点问题,这类问题一般有以下几种类型:(1)求中点弦所在的直线方程问题;(2)求弦中点的轨迹方程问题;(3)弦长为定值时,弦的中点坐标问题等.其解法有点差法、待定系数法、参数法以及中心对称变换法等,但最常用的方法为点差法和待定系数法.一、求中点弦所在直线方程问题【例1】已知一直线与椭圆x24+y22=1交于A、B  相似文献   

12.
直线和圆锥曲线的位置关系,是解析几何中最主要的题型,这类问题涉及到圆锥曲线的性质和直线的基本知识以及线段的中点、弦长等.解决的方法往往采用数形结合思想、“设而不求”的方法和韦达定理.其中椭圆、双曲线、抛物线的中点弦存在性问题是相当常见的.由于椭圆和抛物线的弦的中点必在曲线的内部,因此相对较简单,而双曲线的弦的中点可以在曲线的内部和外部,所以双曲线的中点弦存在性问题就值得我们去探索.例已知双曲线方程为2x~2-y~2=2.(1)求以 P(2,1)为中点的双曲线弦所在的直线方程;(2)过点 Q(1,1)能否作直线 l,使 l 与所给的双曲线交于 A,B 两点,且点 Q 是弦 AB  相似文献   

13.
若点P(x_0,y_0)为定点,则圆锥曲线的过P点且被P点平分的弦简称以定点P为中点的弦.本文给出几种圆锥曲线的以定点为中点的弦所在的直线方程,并说明方程的具体应用. 定理1 若点P(x_0,y_0)在圆C:x~2+y~2=r~2(r>0)内,且P异于圆的圆心,则圆C的以P为中点  相似文献   

14.
以圆锥曲线内一定点为中点的弦所在直线的方程简称中点弦方程.本文以较为简捷的一种方法,先建立中点弦方程,再依此方程推导一组曲线方程,供同仁参考.1求中点弦方程的一种简便方法为方便起见,设圆锥曲线的方程为Ax2+Cy2+Dx+Ey+F=0,()其中,A...  相似文献   

15.
通过圆锥曲线讲解设而不求与整体消元的解题方法,并利用这种方法归纳弦中点轨迹、中点弦所在直线的规律,给出了解决弦中点轨迹方程、中点弦所在直线方程的方法.  相似文献   

16.
<正>在求解圆锥曲线一类问题时,若题目中给出直线与圆锥曲线相交被截得线段中点坐标的时候,把直线和圆锥曲线的两个交点坐标代入圆锥曲线的方程,然后将两个等式作差,得到一个与弦的中点坐标和斜率有关的式子,从中求出直线的斜率,然后利用中点求出直线方程。通常我们将与圆锥曲线的弦的中点有关的问题称之为圆锥曲线的"中点弦问题",把这种代点作差的方法称为"点差法"。"中点弦问题"如果能适时运用点差法,  相似文献   

17.
文[1]对圆锥曲线中点弦的存在性问题作了定性分析,本文在此基础上,给出中点弦所在直线方程的求法,并举例说明其应用.  相似文献   

18.
有关圆锥曲线f(x,y)=Ax~2+Bxy+Cy~2+Dx+Ey+F=0的弦的中点问题,大体可分为两类:一是已知斜率为k的一组平行弦中点的轨迹(也就是直径)的方程;一是以定点(x_0,y_0)为中点的弦所在直线的方程(中点弦的方程)。下面分别作论述。一、斜率为k的一组平行弦中点的轨迹(直径)方程定理1.二次曲线f(x,y)=Ax~2+Bxy+Cy~2+Dx+Ey+F=0的斜率为k的一组平行弦中点的轨迹(即直径)方程是(2A+Bk)x+(B+2Ck)y+(D+Ek)=0①推论二次曲线的直径是一条过斜率为  相似文献   

19.
弦的中点是沟通弦端点、弦的斜率、弦长以及与弦相关的对称问题、轨迹问题的“血管”和“神经” ,灵活利用弦中点的“动”、“静”规律 ,构造动弦、定弦处理与弦有关的问题 ,奇特巧妙、简捷新颖 .本文就这类问题给以归类例析 ,供参考 .曲线 f(x ,y) =0关于点M (x0 ,y0 )对称的曲线方程是f( 2x0 -x ,2y0 -y) =0 ,两式相减得f(x ,y) -f( 2x0 -x ,2 y0 - y) =0 . ( 1)此即为以M为中点的弦所在直线方程 ,简称“中点弦方程” .以此弦作为解题模式的思想方法简称为“中点造弦法” .由 ( 1)易得几种常见曲线b2 x2 ±a2 y2 …  相似文献   

20.
<正>1引入例1:直线l过抛物线y2=4x的顶点,与抛物线相交所得的弦为PQ,求PQ的中点M的轨迹方程。例2=4x的顶点,与抛物线相交所得的弦为PQ,求PQ的中点M的轨迹方程。例2:直线l过抛物线y2:直线l过抛物线y2=16x的焦点,与抛物线相交所得的弦为PQ,求PQ的中点M的轨迹方程。例3:直线l过(0,4)点,与抛物线x2=16x的焦点,与抛物线相交所得的弦为PQ,求PQ的中点M的轨迹方程。例3:直线l过(0,4)点,与抛物线x2=8y相交所得的弦为PQ,求PQ的中点M的轨迹方程。分析上述三个例题的轨迹方程,得到如下结论:过抛物线内对称轴上一定点(包括顶点)的直线截抛物线所得弦中点的轨迹是一条以该定点为顶点,通径为原抛物线的一半的抛物线,且所得抛物线开口方向和对称轴与原抛物线相同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号