首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamics of the impact and coalescence of droplets on a solid surface   总被引:1,自引:0,他引:1  
A simple experimental setup to study the impact and coalescence of deposited droplets is described. Droplet impact and coalescence have been investigated by high-speed particle image velocimetry. Velocity fields near the liquid-substrate interface have been observed for the impact and coalescence of 2.4 mm diameter droplets of glycerol∕water striking a flat transparent substrate in air. The experimental arrangement images the internal flow in the droplets from below the substrate with a high-speed camera and continuous laser illumination. Experimental results are in the form of digital images that are processed by particle image velocimetry and image processing algorithms to obtain velocity fields, droplet geometries, and contact line positions. Experimental results are compared with numerical simulations by the lattice Boltzmann method.  相似文献   

2.
We evaluate the feasibility of manipulating droplets in two dimensions by exploiting Coulombic forces acting on conductive droplets immersed in a dielectric fluid. When a droplet suspended in an immiscible fluid is located near an electrode under a dc voltage, the droplet can be charged by direct contact, by charge transfer along an electrically conducting path, or by both mechanisms. This process is called electrical charging of droplet (ECOD). This charged droplet may then be transported rapidly by exploiting Coulombic forces. We experimentally demonstrate electrical actuation of a charged droplet by applying voltage sequences. A charged droplet is two dimensionally actuated by following the direction of the electrical field signal. The droplet does not contact the surface of the microfluidic chip when it moves. This characteristic is very advantageous because treatments of the substrate surfaces of microfluidic chip become simpler. In order to test the feasibility of using ECOD in a droplet-based microreactor, electrocoalescence of two oppositely charged droplets is also studied. When two droplets approach each other due to Coulombic attraction, a liquid bridge is formed between them. We postulate that if the applied electric field is weaker than a certain critical level, the two droplets coalesce instantaneously when the charges are exchanged and redistributed through this liquid bridge.  相似文献   

3.
The overall traffic of droplets in a network of microfluidic channels is strongly influenced by the liquid properties of the moving droplets. In particular, the effective hydrodynamic resistance of individual droplets plays a key role in their global behavior. Here we propose two simple and low-cost experimental methods for measuring this parameter by analyzing the dynamics of a regular sequence of droplets injected into an “asymmetric loop” network. The choice of a droplet taking either route through the loop is influenced by the presence of previous droplets that modulate the hydrodynamic resistance of the branches they are sitting in. We propose to extract the effective resistance of a droplet from easily observable time series, namely, from the choices the droplets make at junctions and from the interdroplet distances. This becomes possible when utilizing a recently proposed theoretical model based on a number of simplifying assumptions. Here we present several sets of measurements of the hydrodynamic resistance of droplets, expressed in terms of a “resistance length.” The aim is twofold: (1) to reveal its dependence on a number of parameters, such as the viscosity, the volume of droplets, their velocity as well as the spacing between them. At the same time (2), by using a standard measurement technique, we compare the limitations of the proposed methods. As an important result of this comparison, we obtain the range of validity of the simplifying assumptions made in the theoretical model.  相似文献   

4.
An experimental study on isotachophoresis (ITP) in which an emulsion is used as leading electrolyte (LE) is reported. The study aims at giving an overview about the transport and flow phenomena occurring in that context. Generally, it is observed that the oil droplets initially dispersed in the LE are collected at the ITP transition zone and advected along with it. The detailed behavior at the transition zone depends on whether or not surfactants (polyvinylpyrrolidon, PVP) are added to the electrolytes. In a system without surfactants, coalescence is observed between the droplets collected at the ITP transition zone. After having achieved a certain size, the droplets merge with the channel walls, leaving an oil film behind. In systems with PVP, coalescence is largely suppressed and no merging of droplets with the channel walls is observed. Instead, at the ITP transition zone, a droplet agglomerate of increasing size is formed. In the initial stages of the ITP experiments, two counter rotating vortices are formed inside the terminating electrolyte. The vortex formation is qualitatively explained based on a hydrodynamic instability triggered by fluctuations of the number density of oil droplets.  相似文献   

5.
Dilution of microfluidic droplets where the concentration of a reagent is incrementally varied is a key operation in drop-based biological analysis. Here, we present an electrocoalescence based dilution scheme for droplets based on merging between moving and parked drops. We study the effects of fluidic and electrical parameters on the dilution process. Highly consistent coalescence and fine resolution in dilution factor are achieved with an AC signal as low as 10 V even though the electrodes are separated from the fluidic channel by insulator. We find that the amount of material exchange between the droplets per coalescence event is high for low capillary number. We also observe different types of coalescence depending on the flow and electrical parameters and discuss their influence on the rate of dilution. Overall, we find the key parameter governing the rate of dilution is the duration of coalescence between the moving and parked drop. The proposed design is simple incorporating the channel electrodes in the same layer as that of the fluidic channels. Our approach allows on-demand and controlled dilution of droplets and is simple enough to be useful for assays that require serial dilutions. The approach can also be useful for applications where there is a need to replace or wash fluid from stored drops.  相似文献   

6.
Droplet microfluidics is a powerful method used to characterize chemical reactions at high throughput. Often detection is performed via in-line optical readout, which puts high demands on the detection system or makes detection of low concentration substrates challenging. Here, we have developed a droplet acoustofluidic chip for time-controlled reactions that can be combined with off-line optical readout. The principle of the platform is demonstrated by the enzymatic conversion of fluorescein diphosphate to fluorescein by alkaline phosphatase. The novelty of this work is that the time of the enzymatic reaction is controlled by physically removing the enzymes from the droplets instead of using chemical inhibitors. This is advantageous as inhibitors could potentially interact with the readout. Droplets containing substrate were generated on the chip, and enzyme-coupled microbeads were added into the droplets via pico-injection. The reaction starts as soon as the enzyme/bead complexes are added, and the reaction is stopped when the microbeads are removed from the droplets at a channel bifurcation. The encapsulated microbeads were focused in the droplets by acoustophoresis during the split, leaving the product in the side daughter droplet to be collected for the analysis (without beads). The time of the reaction was controlled by using different outlets, positioned at different lengths from the pico-injector. The enzymatic conversion could be measured with fluorescence readout in a separate PDMS based assay chip. We show the ability to perform time-controlled enzymatic assays in droplet microfluidics coupled to an off-line optical readout, without the need of enzyme inhibitors.  相似文献   

7.
We present a novel use for channel structures in microfluidic devices, whereby two two-phase emulsions, one created on-chip, the other off-chip, are rapidly mixed with each other in order to allow for the coalescence of one emulsion with the other. This approach has been motivated by the difficulty in introducing aqueous cross linking agents into droplets by utilising conventional approaches. These conventional approaches include continuous introduction of the different aqueous reagents before droplet formation or alternatively formation of individual droplets of each reagent and subsequent droplet merging later in the microfluidic device. We show that our approach can decrease the mixing time for these fluidic systems by a factor greater than 10 times when compared to a standard microfluidic channel without structures, thereby also allowing for additional reaction time within the microfluidic device. This method shows an application for microfluidic channel structures not before demonstrated, also demonstrating an alternative method for introducing reagents such as cross linkers which link polymer chains to form particles, and provides an example where enzymes are immobilized in monodisperse particles.  相似文献   

8.
The behavior of a droplet train in a microfluidic network with hydrodynamic traps in which the hydrodynamic resistive properties of the network are varied is investigated. The flow resistance of the network and the individual droplets guide the movement of droplets in the network. In general, the flow behavior transitions from the droplets being immobilized in the hydrodynamic traps at low flow rates to breaking up and squeezing of the droplets at higher flow rates. A state diagram characterizing these dynamics is presented. A simple hydrodynamic circuit model that treats droplets as fluidic resistors is discussed, which predicts the experimentally observed flow rates for droplet trapping in the network. This study should enable the rational design of microfuidic devices for passive storage of nanoliter-scale drops.  相似文献   

9.
This work reports experimental and theoretical studies of hydrodynamic behaviour of deformable objects such as droplets and cells in a microchannel. Effects of mechanical properties including size and viscosity of these objects on their deformability, mobility, and induced hydrodynamic resistance are investigated. The experimental results revealed that the deformability of droplets, which is quantified in terms of deformability index (D.I.), depends on the droplet-to-channel size ratio ρ and droplet-to-medium viscosity ratio λ. Using a large set of experimental data, for the first time, we provide a mathematical formula that correlates induced hydrodynamic resistance of a single droplet ΔRd with the droplet size ρ and viscosity λ. A simple theoretical model is developed to obtain closed form expressions for droplet mobility ? and ΔRd. The predictions of the theoretical model successfully confront the experimental results in terms of the droplet mobility ? and induced hydrodynamic resistance ΔRd. Numerical simulations are carried out using volume-of-fluid model to predict droplet generation and deformation of droplets of different size ratio ρ and viscosity ratio λ, which compare well with that obtained from the experiments. In a novel effort, we performed experiments to measure the bulk induced hydrodynamic resistance ΔR of different biological cells (yeast, L6, and HEK 293). The results reveal that the bulk induced hydrodynamic resistance ΔR is related to the cell concentration and apparent viscosity of the cells.  相似文献   

10.
This work proposes the use of charged droplets driven by the Coulombic force as solution-phase reaction chambers for biological microreactions. A droplet can be charged near an electrode under dc voltage by direct contact to the electrode. This process is called electrical charging of droplet (ECOD). This charged droplet can then be transported rapidly between electrodes following the arc of an electric field line by exploiting electrostatic force. As on-demand electrocoalescence, both alkalization of phenolphthalein and bioluminescence reaction of luciferase in the presence of adenosine triphosphate are studied to test the feasibility of the biochemical microreactors using ECOD. Two oppositely charged droplets are merged to have a color change immediately after microchemical reaction. The applicability of an ECOD-driven droplet to measurement of glucose concentration is also tested. The glucose concentration is measured using a colorimetric enzyme-kinetic method based on Trinder’s reaction [J. Clin. Pathol. 22, 158 (1969)]. The color change in the merged droplet is detected with an absorbance measurement system consisting of a photodiode and a light emitting diode.  相似文献   

11.
A new microfluidic device with liquid-droplet merging and droplet storage functions for the controlled release of drugs from microcapsules is reported. A switching channel is designed and integrated within the microfluidic device, facilitating the generation and capturing of uniform droplets by the storage chambers. The drug model is the MnCO3 microparticle, which is encapsulated by a microcapsule and fabricated using a simple layer-by-layer nanoassembly process. The merging function is used for dynamically adding the control solution into the droplets, which contain drugs within the microcapsules (DWμCs) and water. The storage chambers are used for collecting DWμCs-laden droplets so that the controlled-drug release in specific droplets can be monitored for an extended period of time, which has been experimentally implemented successfully. This technology could offer a promising technical platform for the long-term observation and studies of drug effects on specific cells in a controlled manner, which is especially useful for single cell analysis.  相似文献   

12.
Using a membrane emulsification method based on porous hollow-fiber membranes in combination with an aqueous two-phase system (ATPS), we are able to produce “water-in-water” droplets with narrow-dispersed size distributions. The equilibrium phases of the aqueous two-phase system polyethylene glycol-dipotassium hydrogen phosphate are used for this purpose. The droplet diameter of a given fluid system is determined by the flow rates of the continuous and disperse phase as well as the hollow fiber dimensions. When diluting the disperse phase and thus moving the ATPS system out of equilibrium, the droplet size can be further reduced in comparison to the equilibrium case. Generally, droplets formed with this method have diameters 20%–60% larger than the inner hollow fiber diameter. The new strategy of diluting the disperse phase allows the production of droplet diameter below the inner diameter of the membrane.  相似文献   

13.
This study reports a droplet-based microfluidic device for on-demand electrostatic droplet charging and sorting. This device combines two independent modules: one is a hydrodynamic flow focusing structure to generate water-in-oil droplets, and the other is the two paired-electrodes for charging and sorting of the droplets. Depending on the polarity on charging electrodes, water-in-oil droplets can be electrostatically charged positively or negatively, followed by automatic real-time electric sorting. This approach will be useful when preformed droplets, with a positive, a negative, or with no charge, need to be manipulated for further on-chip droplet manipulation.  相似文献   

14.
We present a droplet-based microfluidic system for performing bioassays requiring controlled analyte encapsulation by employing highly flexible on-demand droplet generation. On-demand droplet generation and encapsulation are achieved pneumatically using a microdispensing pump connected to a constant pressure source. The system generates single droplets to the collection route only when the pump is actuated with a designated pressure level and produces two-phase parallel flow to the waste route during the stand-by state. We analyzed the effect of actuation pressure on the stability and size of droplets and optimized conditions for generation of stable droplets over a wide pressure range. By increasing the duration of pump actuation, we could either trigger a short train of identical size droplets or generate a single larger droplet. We also investigated the methodology to control droplet contents by fine-tuning flow rates or implementing a resistance bridge between the pump and main channels. We demonstrated the integrated chip for on-demand mixing between two aqueous phases in droplets and on-demand encapsulation of Escherichia coli cells. Our unique on-demand feature for selective encapsulation is particularly appropriate for bioassays with extremely dilute samples, such as pathogens in a clinical sample, since it can significantly reduce the number of empty droplets that impede droplet collection and subsequent data analysis.  相似文献   

15.
We introduce a novel type of droplet generator that produces droplets of a volume set by the geometry of the droplet generator and not by the flow rates of the liquids. The generator consists of a classic T-junction with a bypass channel. This bypass directs the continuous fluid around the forming droplets, so that they can fill the space between the inlet of the dispersed phase and the exit of the bypass without breaking. Once filled, the dispersed phase blocks the exit of the bypass and is squeezed by the continuous fluid and broken off from the junction. We demonstrate the fixed-volume droplet generator for (i) the formation of monodisperse droplets from a source of varying flow rates, (ii) the formation of monodisperse droplets containing a gradation of solute concentration, and (iii) the parallel production of monodisperse droplets.  相似文献   

16.
The applicability of droplet-based microfluidic systems to many research fields stems from the fact that droplets are generally considered individual and self-contained reaction vessels. This study demonstrates that, more often than not, the integrity of droplets is not complete, and depends on a range of factors including surfactant type and concentration, the micro-channel surface, droplet storage conditions, and the flow rates used to form and process droplets. Herein, a model microfluidic device is used for droplet generation and storage to allow the comparative study of forty-four different oil/surfactant conditions. Assessment of droplet stability under these conditions suggests a diversity of different droplet failure modes. These failure modes have been classified into families depending on the underlying effect, with both numerical and qualitative models being used to describe the causative effect and to provide practical solutions for droplet failure amelioration in microfluidic systems.  相似文献   

17.
Bistability in droplet traffic at asymmetric microfluidic junctions   总被引:1,自引:0,他引:1  
We present the first experimental demonstration of confined microfluidic droplets acting as discrete negative resistors, wherein the effective hydrodynamic resistance to flow in a microchannel is reduced by the presence of a droplet. The implications of this hitherto unexplored regime in the traffic of droplets in microfluidic networks are highlighted by demonstrating bistable filtering into either arm of symmetric and asymmetric microfluidic loops, and programming oscillatory droplet routing therein.  相似文献   

18.
We here present and characterize a programmable nanoliter scale droplet-on-demand device that can be used separately or readily integrated into low cost single layer rapid prototyping microfluidic systems for a wide range of user applications. The passive microfluidic device allows external (off-the-shelf) electronically controlled pinch valves to program the delivery of nanoliter scale aqueous droplets from up to 9 different inputs to a central outlet channel. The inputs can be either continuous aqueous fluid streams or microliter scale aqueous plugs embedded in a carrier fluid, in which case the number of effective input solutions that can be employed in an experiment is no longer strongly constrained (100 s–1000 s). Both nanoliter droplet sequencing output and nanoliter-scale droplet mixing are reported with this device. Optimization of the geometry and pressure relationships in the device was achieved in several hardware iterations with the support of open source microfluidic simulation software and equivalent circuit models. The requisite modular control of pressure relationships within the device is accomplished using hydrodynamic barriers and matched resistance channels with three different channel heights, custom parallel reversible microfluidic I/O connections, low dead-volume pinch valves, and a simply adjustable array of external screw valves. Programmable sequences of droplet mixes or chains of droplets can be achieved with the device at low Hz frequencies, limited by device elasticity, and could be further enhanced by valve integration. The chip has already found use in the characterization of droplet bunching during export and the synthesis of a DNA library.  相似文献   

19.
Concurrent droplet charging and sorting by electrostatic actuation   总被引:1,自引:0,他引:1  
This paper presents a droplet-based microfluidic device for concurrent droplet charging and sorting by electrostatic actuation. Water-in-oil droplets can be charged on generation by synchronized electrostatic actuation. Then, simultaneously, the precharged droplets can be electrostatically steered into any designated laminar streamline, thus they can be sorted into one of multiple sorting channels one by one in a controlled fashion. In this paper, we studied the size dependence of the water droplets under various relative flow rates of water and oil. We demonstrated the concurrent charging and sorting of up to 600 droplets∕s by synchronized electrostatic actuation. Finally, we investigated optimized voltages for stable droplet charging and sorting. This is an essential enabling technology for fast, robust, and multiplexed sorting of microdroplets, and for the droplet-based microfluidic systems.  相似文献   

20.
Although digital detection of nucleic acids has been achieved by amplification of single templates in uniform microfluidic droplets and widely used for genetic analysis, droplet-based digital detection of proteins has rarely been reported, largely due to the lack of an efficient target amplification method for protein in droplets. Here, we report a key step towards digital detection of proteins using a highly parallel microfluidic droplet approach for single enzyme molecule detection in picoliter droplets via enzyme catalyzed signal amplification. An integrated microfluidic chip was designed for high throughput uniform droplet generation, monolayer droplet collection, incubation, detection, and release. Single β-galatosidase (β-Gal) molecules and the fluorogenic substrate fluorescein di-β-D-galactopyranoside were injected from two separated inlets to form uniform 20 μm droplets in fluorinated oil at a frequency of 6.6 kHz. About 200 000 droplets were captured as a monolayer in a capture well on-chip for subsequent imaging detection. A series of β-Gal solutions at different concentrations were analyzed at the single-molecule level. With no enzyme present, no droplets were found to fluoresce, while brightly fluorescent droplets were observed under single-enzyme molecule conditions. Droplet fluorescence intensity distribution analysis showed that the distribution of enzyme molecules under single-molecule conditions matched well with theoretical prediction, further proving the feasibility of detecting single enzyme molecules in emulsion droplets. Moreover, the population of fluorescent droplets increased as the β-Gal concentration increased. Based on a digital counting method, the measured concentrations of the enzyme were found to match well with input enzyme concentration, establishing the accuracy of the digital detection method for the quantification of β-Gal enzyme molecules. The capability of highly parallel detection of single enzyme molecules in uniform picoliter droplets paves the way to microdroplet based digital detection of proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号