首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Robust bubble-free priming of complex microfluidic chips represents a critical, yet often unmet prerequisite to enable their practical and widespread application. Towards this end, the usage of a network of capillary stop valves as a generic design feature is proposed. Design principles, numerical simulations, and their application in the development of a microfluidic cell culture device are presented. This chip comprises eight parallel chambers for the assembly and cultivation of human hepatocytes and endothelial cells. The inlet channel divides into cell chambers, after which the flows are reunited to a single chip outlet. Dimensions and geometry of channels and cell chambers are designed to yield capillary burst pressures sequentially increasing towards the chip outlet. Thus, progress of liquid flow through the device is predefined by design and enclosure of air bubbles inside the microfluidic structures is efficiently avoided. Capillary stop valves were designed using numerical simulations. Devices were fabricated in cyclic olefin polymer. Pressure during filling was determined experimentally and is in good agreement with data obtained from simulation.  相似文献   

2.
Malaria-infected red blood cells (iRBCs) become less deformable with the progression of infection and tend to occlude microcapillaries. This process has been investigated in vitro using microfluidic channels. The objective of this paper is to provide a quantitative basis for interpreting the experimental observations of iRBC occlusion of microfluidic channels. Using a particle-based model for the iRBC, we simulate the traverse of iRBCs through a converging microfluidic channel and explore the progressive loss of cell deformability due to three factors: the stiffening of the membrane, the reduction of the cell''s surface-volume ratio, and the growing solid parasites inside the cell. When examined individually, each factor tends to hinder the passage of the iRBC and lengthen the transit time. Moreover, at sufficient magnitude, each may lead to obstruction of narrow microfluidic channels. We then integrate the three factors into a series of simulations that mimic the development of malaria infection through the ring, trophozoite, and schizont stages. These simulations successfully reproduce the experimental observation that with progression of infection, the iRBC transitions from passage to blockage in larger and larger channels. The numerical results suggest a scheme for quantifying iRBC rigidification through microfluidic measurements of the critical pressure required for passage.  相似文献   

3.
Diffusion of autocrine and paracrine signaling molecules allows cells to communicate in the absence of physical contact. This chemical-based, long-range communication serves crucial roles in tissue function, activation of the immune system, and other physiological functions. Despite its importance, few in vitro methods to study cell-cell signaling through paracrine factors are available today. Here, we report the design and validation of a microfluidic platform that enables (i) soluble molecule-cell and/or (ii) cell-cell paracrine signaling. In the microfluidic platform, multiple cell populations can be introduced into parallel channels. The channels are separated by arrays of posts allowing diffusion of paracrine molecules between cell populations. A computational analysis was performed to aid design of the microfluidic platform. Specifically, it revealed that channel spacing affects both spatial and temporal distribution of signaling molecules, while the initial concentration of the signaling molecule mainly affects the concentration of the signaling molecules excreted by the cells. To validate the microfluidic platform, a model system composed of the signaling molecule lipopolysaccharide, mouse macrophages, and engineered human embryonic kidney cells was introduced into the platform. Upon diffusion from the first channel to the second channel, lipopolysaccharide activates the macrophages which begin to produce TNF-α. The TNF-α diffuses from the second channel to the third channel to stimulate the kidney cells, which express green fluorescent protein (GFP) in response. By increasing the initial lipopolysaccharide concentration an increase in fluorescent response was recorded, demonstrating the ability to quantify intercellular communication between 3D cellular constructs using the microfluidic platform reported here. Overall, these studies provide a detailed analysis on how concentration of the initial signaling molecules, spatiotemporal dynamics, and inter-channel spacing affect intercellular communication.  相似文献   

4.
To sequentially handle fluids is of great significance in quantitative biology, analytical chemistry, and bioassays. However, the technological options are limited when building such microfluidic sequential processing systems, and one of the encountered challenges is the need for reliable, efficient, and mass-production available microfluidic pumping methods. Herein, we present a bubble-free and pumping-control unified liquid handling method that is compatible with large-scale manufacture, termed multilayer microfluidic sample isolated pumping (mμSIP). The core part of the mμSIP is the selective permeable membrane that isolates the fluidic layer from the pneumatic layer. The air diffusion from the fluidic channel network into the degassing pneumatic channel network leads to fluidic channel pressure variation, which further results in consistent bubble-free liquid pumping into the channels and the dead-end chambers. We characterize the mμSIP by comparing the fluidic actuation processes with different parameters and a flow rate range of 0.013 μl/s to 0.097 μl/s is observed in the experiments. As the proof of concept, we demonstrate an automatic sequential fluid handling system aiming at digital assays and immunoassays, which further proves the unified pumping-control and suggests that the mμSIP is suitable for functional microfluidic assays with minimal operations. We believe that the mμSIP technology and demonstrated automatic sequential fluid handling system would enrich the microfluidic toolbox and benefit further inventions.  相似文献   

5.
Unwanted sedimentation and attachment of a number of cells onto the bottom channel often occur on relatively large-scale inlets of conventional microfluidic channels as a result of gravity and fluid shear. Phenomena such as sedimentation have become recognized problems that can be overcome by performing microfluidic experiments properly, such as by calculating a meaningful output efficiency with respect to real input. Here, we present a dual-inlet design method for reducing cell loss at the inlet of channels by adding a new “ upstream inlet ” to a single main inlet design. The simple addition of an upstream inlet can create a vertically layered sheath flow prior to the main inlet for cell loading. The bottom layer flow plays a critical role in preventing the cells from attaching to the bottom of the channel entrance, resulting in a low possibility of cell sedimentation at the main channel entrance. To provide proof-of-concept validation, we applied our design to a microfabricated flow cytometer system (μFCS) and compared the cell counting efficiency of the proposed μFCS with that of the previous single-inlet μFCS and conventional FCS. We used human white blood cells and fluorescent microspheres to quantitatively evaluate the rate of cell sedimentation in the main inlet and to measure fluorescence sensitivity at the detection zone of the flow cytometer microchip. Generating a sheath flow as the bottom layer was meaningfully used to reduce the depth of field as well as the relative deviation of targets in the z-direction (compared to the x-y flow plane), leading to an increased counting sensitivity of fluorescent detection signals. Counting results using fluorescent microspheres showed both a 40% reduction in the rate of sedimentation and a 2-fold higher sensitivity in comparison with the single-inlet μFCS. The results of CD4+ T-cell counting also showed that the proposed design results in a 25% decrease in the rate of cell sedimentation and a 28% increase in sensitivity when compared to the single-inlet μFCS. This method is simple and easy to use in design, yet requires no additional time or cost in fabrication. Furthermore, we expect that this approach could potentially be helpful for calculating exact cell loading and counting efficiency for a small input number of cells, such as primary cells and rare cells, in microfluidic channel applications.  相似文献   

6.
We here present and characterize a programmable nanoliter scale droplet-on-demand device that can be used separately or readily integrated into low cost single layer rapid prototyping microfluidic systems for a wide range of user applications. The passive microfluidic device allows external (off-the-shelf) electronically controlled pinch valves to program the delivery of nanoliter scale aqueous droplets from up to 9 different inputs to a central outlet channel. The inputs can be either continuous aqueous fluid streams or microliter scale aqueous plugs embedded in a carrier fluid, in which case the number of effective input solutions that can be employed in an experiment is no longer strongly constrained (100 s–1000 s). Both nanoliter droplet sequencing output and nanoliter-scale droplet mixing are reported with this device. Optimization of the geometry and pressure relationships in the device was achieved in several hardware iterations with the support of open source microfluidic simulation software and equivalent circuit models. The requisite modular control of pressure relationships within the device is accomplished using hydrodynamic barriers and matched resistance channels with three different channel heights, custom parallel reversible microfluidic I/O connections, low dead-volume pinch valves, and a simply adjustable array of external screw valves. Programmable sequences of droplet mixes or chains of droplets can be achieved with the device at low Hz frequencies, limited by device elasticity, and could be further enhanced by valve integration. The chip has already found use in the characterization of droplet bunching during export and the synthesis of a DNA library.  相似文献   

7.
Microfluidic devices have been established as useful platforms for cell culture for a broad range of applications, but challenges associated with controlling gradients of oxygen and other soluble factors and hemodynamic shear forces in small, confined channels have emerged. For instance, simple microfluidic constructs comprising a single cell culture compartment in a dynamic flow condition must handle tradeoffs between sustaining oxygen delivery and limiting hemodynamic shear forces imparted to the cells. These tradeoffs present significant difficulties in the culture of mesenchymal stem cells (MSCs), where shear is known to regulate signaling, proliferation, and expression. Several approaches designed to shield cells in microfluidic devices from excessive shear while maintaining sufficient oxygen concentrations and transport have been reported. Here we present the relationship between oxygen transport and shear in a "membrane bilayer" microfluidic device, in which soluble factors are delivered to a cell population by means of flow through a proximate channel separated from the culture channel by a membrane. We present an analytical model that describes the characteristics of this device and its ability to independently modulate oxygen delivery and hemodynamic shear imparted to the cultured cells. This bilayer configuration provides a more uniform oxygen concentration profile that is possible in a single-channel system, and it enables independent tuning of oxygen transport and shear parameters to meet requirements for MSCs and other cells known to be sensitive to hemodynamic shear stresses.  相似文献   

8.
Definable surface chemistry is essential for many applications of microfluidic polymer systems. However, small cross-section channels with a high surface to volume ratio enhance passive adsorption of molecules that depletes active molecules in solution and contaminates the channel surface. Here, we present a one-step photochemical process to coat the inner surfaces of closed microfluidic channels with a nanometer thick layer of poly(ethylene glycol) (PEG), well known to strongly reduce non-specific adsorption, using only commercially available reagents in an aqueous environment. The coating consists of PEG diacrylate (PEGDA) covalently grafted to polymer surfaces via UV light activation of the water soluble photoinitiator benzoyl benzylamine, a benzophenone derivative. The PEGDA coating was shown to efficiently limit the adsorption of antibodies and other proteins to <5% of the adsorbed amount on uncoated polymer surfaces. The coating could also efficiently suppress the adhesion of mammalian cells as demonstrated using the HT-29 cancer cell line. In a subsequent equivalent process step, protein in aqueous solution could be anchored onto the PEGDA coating in spatially defined patterns with a resolution of <15 μm using an inverted microscope as a projection lithography system. Surface patterns of the cell binding protein fibronectin were photochemically defined inside a closed microfluidic device that was initially homogeneously coated by PEGDA. The resulting fibronectin patterns were shown to greatly improve cell adhesion compared to unexposed areas. This method opens for easy surface modification of closed microfluidic systems through combining a low protein binding PEG-based coating with spatially defined protein patterns of interest.  相似文献   

9.
In this study, we developed a miniaturized microfluidic-based high-throughput cell toxicity assay to create an in vitro model of Parkinson's disease (PD). In particular, we generated concentration gradients of 6-hydroxydopamine (6-OHDA) to trigger a process of neuronal apoptosis in pheochromocytoma PC12 neuronal cell line. PC12 cells were cultured in a microfluidic channel, and a concentration gradient of 6-OHDA was generated in the channel by using a back and forth movement of the fluid flow. Cellular apoptosis was then analyzed along the channel. The results indicate that at low concentrations of 6-OHDA along the gradient (i.e., approximately less than 260 μM), the neuronal death in the channel was mainly induced by apoptosis, while at higher concentrations, 6-OHDA induced neuronal death mainly through necrosis. Thus, this concentration appears to be useful for creating an in vitro model of PD by inducing the highest level of apoptosis in PC12 cells. As microfluidic systems are advantageous in a range of properties such as throughput and lower use of reagents, they may provide a useful approach for generating in vitro models of disease for drug discovery applications.  相似文献   

10.
Herein proposed is a simple system to realize hands-free labeling and simultaneous detection of two human cell lines within a microfluidic device. This system was realized by novel covalent immobilization of pH-responsive poly(methacrylic acid) microgels onto the inner glass surface of an assembled polydimethylsiloxane/glass microfluidic channel. Afterwards, selected thiophene labeled monoclonal antibodies, specific for recognition of CD4 antigens on T helper/inducer cells and CD19 antigens on B lymphocytes cell lines, were encapsulated in their active state by the immobilized microgels. When the lymphocytes suspension, containing the two target subpopulations, was flowed through the microchannel, the physiological pH of the cellular suspension induced the release of the labeled antibodies from the microgels and thus the selective cellular staining. The selective pH-triggered staining of the CD4- and CD19-positive cells was investigated in this preliminary experimental study by laser scanning confocal microscopy. This approach represents an interesting and versatile tool to realize cellular staining in a defined module of lab-on-a-chip devices for subsequent detection and counting.  相似文献   

11.
The physiology of vascular endothelial cells is strongly affected by fluid shear stress on their surface. In this study, a microfluidic assay was employed to analyze the alignment of actin filaments in endothelial cells in response to shear stress. When cells were cultured in microfluidic channels and subjected to shear stress, the alignment of filaments in the channel direction was significantly higher than in static cultures. By adding inhibitory drugs, the roles of several signaling proteins in the process of alignment were determined. Thus, it is shown how microfluidic technology can be employed to provide a mechanistic insight into cell physiology.  相似文献   

12.
We report the development and results of a two-step method for sorting cells and small particles in a microfluidic device. This approach uses a single microfluidic channel that has (1) a microfabricated sieve which efficiently focuses particles into a thin stream, followed by (2) a dielectrophoresis (DEP) section consisting of electrodes along the channel walls for efficient continuous sorting based on dielectric properties of the particles. For our demonstration, the device was constructed of polydimethylsiloxane, bonded to a glass surface, and conductive agarose gel electrodes. Gold traces were used to make electrical connections to the conductive gel. The device had several novel features that aided performance of the sorting. These included a sieving structure that performed continuous displacement of particles into a single stream within the microfluidic channel (improving the performance of downstream DEP, and avoiding the need for additional focusing flow inlets), and DEP electrodes that were the full height of the microfluidic walls (“vertical electrodes”), allowing for improved formation and control of electric field gradients in the microfluidic device. The device was used to sort polymer particles and HeLa cells, demonstrating that this unique combination provides improved capability for continuous DEP sorting of particles in a microfluidic device.  相似文献   

13.
This paper reports a two-layered polydimethylsiloxane microfluidic device—Flip channel, capable of forming uniform-sized embryoid bodies (EBs) and performing stem cell differentiation within the same device after flipping the microfluidic channel. The size of EBs can be well controlled by designing the device geometries, and EBs with multiple sizes can be formed within a single device to study EB size-dependent stem cell differentiation. During operation of the device, cells are positioned in the designed positions. As a result, observation and monitoring specific population of cells can be achieved for further analysis. In addition, after flipping the microfluidic channel, stem cell differentiation from the EBs can be performed on an unconfined flat surface that is desired for various differentiation processes. In the experiments, murine embryonic stem cells (ES-D3) are cultured and formed EBs inside the developed device. The size of EBs is well controlled inside the device, and the neural differentiation is performed on the formed EBs after flipping the channel. The EB size-dependent stem cell differentiation is studied using the device to demonstrate its functions. The device provides a useful tool to study stem cell differentiation without complicated device fabrication and tedious cell handling under better-controlled microenvironments.  相似文献   

14.
In this paper, we demonstrate the possibility to trap and sort labeled cells under flow conditions using a microfluidic device with an integrated flat micro-patterned hard magnetic film. The proposed technique is illustrated using a cell suspension containing a mixture of Jurkat cells and HEK (Human Embryonic Kidney) 293 cells. Prior to sorting experiments, the Jurkat cells were specifically labeled with immunomagnetic nanoparticles, while the HEK 293 cells were unlabeled. Droplet-based experiments demonstrated that the Jurkat cells were attracted to regions of maximum stray field flux density while the HEK 293 cells settled in random positions. When the mixture was passed through a polydimethylsiloxane (PDMS) microfluidic channel containing integrated micromagnets, the labeled Jurkat cells were selectively trapped under fluid flow, while the HEK cells were eluted towards the device outlet. Increasing the flow rate produced a second eluate much enriched in Jurkat cells, as revealed by flow cytometry. The separation efficiency of this biocompatible, compact micro-fluidic separation chamber was compared with that obtained using two commercial magnetic cell separation kits.  相似文献   

15.
We report how cell rheology measurements can be performed by monitoring the deformation of a cell in a microfluidic constriction, provided that friction and fluid leaks effects between the cell and the walls of the microchannels are correctly taken into account. Indeed, the mismatch between the rounded shapes of cells and the angular cross-section of standard microfluidic channels hampers efficient obstruction of the channel by an incoming cell. Moreover, friction forces between a cell and channels walls have never been characterized. Both effects impede a quantitative determination of forces experienced by cells in a constriction. Our study is based on a new microfluidic device composed of two successive constrictions, combined with optical interference microscopy measurements to characterize the contact zone between the cell and the walls of the channel. A cell squeezed in a first constriction obstructs most of the channel cross-section, which strongly limits leaks around cells. The rheological properties of the cell are subsequently probed during its entry in a second narrower constriction. The pressure force is determined from the pressure drop across the device, the cell velocity, and the width of the gutters formed between the cell and the corners of the channel. The additional friction force, which has never been analyzed for moving and constrained cells before, is found to involve both hydrodynamic lubrication and surface forces. This friction results in the existence of a threshold for moving the cells and leads to a non-linear behavior at low velocity. The friction force can nevertheless be assessed in the linear regime. Finally, an apparent viscosity of single cells can be estimated from a numerical prediction of the viscous dissipation induced by a small step in the channel. A preliminary application of our method yields an apparent loss modulus on the order of 100 Pa s for leukocytes THP-1 cells, in agreement with the literature data.  相似文献   

16.
This paper presents a microfluidic device (poly-dimethylsiloxane micro channels bonded with glass slides) enabling culture of MLO-Y4 osteocyte like cells. In this study, on-chip collagen coating, cell seeding and culture, as well as staining were demonstrated in a tubing-free manner where gravity was used as the driving force for liquid transportation. MLO-Y4 cells were cultured in microfluidic channels with and without collagen coating where cellular images in a time sequence were taken and analyzed, confirming the positive effect of collagen coating on phenotype maintaining of MLO-Y4 cells. The proliferating cell nuclear antigen based proliferation assay was used to study cellular proliferation, revealing a higher proliferation rate of MLO-Y4 cells seeded in microfluidic channels without collagen coating compared to the substrates coated with collagen. Furthermore, the effects of channel dimensions (variations in width and height) on the viability of MLO-Y4 cells were explored based on the Calcein-AM and propidium iodide based live/dead assay and the Hoechst 33258 based apoptosis assay, locating the correlation between the decrease in channel width or height and the decrease in cell viability. As a platform technology, this microfluidic device may function as a new cell culture model enabling studies of osteocytes.  相似文献   

17.
We propose biofunctionalized nanofluidic slits (nanoslits) as an effective platform for real-time fluorescence-based biosensing in a reaction-limited regime with optimized target capture efficiency. This is achieved by the drastic reduction of the diffusion length, thereby a boosted collision frequency between the target analytes and the sensor, and the size reduction of the sensing element down to the channel height comparable to the depletion layer caused by the reaction. Hybridization experiments conducted in DNA-functionalized nanoslits demonstrate the analyte depletion and the wash-free detection ∼10 times faster compared to the best microfluidic sensing platforms. The signal to background fluorescence ratio is drastically increased at lower target concentrations, in favor of low-copy number analyte analysis. Experimental and simulation results further show that biofunctionalized nanoslits provide a simple means to study reaction kinetics at the single-pixel level using conventional fluorescence microscopy with reduced optical depth.  相似文献   

18.
In this article, we present a microfluidic platform for passive fluid pumping for pump-free perfusion cell culture, cell-based assay, and chemical applications. By adapting the passive membrane-controlled pumping principle from the previously developed perfusion microplate, which utilizes a combination of hydrostatic pressure generated by different liquid levels in the wells and fluid wicking through narrow strips of a porous membrane connecting the wells to generate fluid flow, a series of pump-free membrane-controlled perfusion microfluidic devices was developed and their use for pump-free perfusion cell culture and cell-based assays was demonstrated. Each pump-free membrane-controlled perfusion microfluidic device comprises at least three basic components: an open well for generating fluid flow, a micron-sized deep chamber/channel for cell culture or for fluid connection, and a wettable porous membrane for controlling the fluid flow. Each component is fluidically connected either by the porous membrane or by the micron-sized deep chamber/channel. By adapting and incorporating the passive membrane-controlled pumping principle into microfluidic devices, all the benefits of microfluidic technologies, such as small sample volumes, fast and efficient fluid exchanges, and fluid properties at the micro-scale, can be fully taken advantage of with this pump-free membrane-controlled perfusion microfluidic platform.  相似文献   

19.
Adler M  Groisman A 《Biomicrofluidics》2012,6(2):24109-2410916
Mixing of liquids to produce solutions with different concentrations is one of the basic functionalities of microfluidic devices. Generation of specific temporal patterns of concentration in microfluidic devices is an important technique to study responses of cells and model organisms to variations in the chemical composition of their environment. Here, we present a simple microfluidic network that linearly converts pressure at an inlet into concentration of a soluble reagent in an observation region and also enables independent concurrent linear control of concentrations of two reagents. The microfluidic device has an integrated mixer channel with chaotic three-dimensional flow that facilitates rapid switching of concentrations in a continuous range. A simple pneumatic setup generating linear ramps of pressure is used to produce smooth linear ramps and triangular waves of concentration with different slopes. The use of chaotic vs. laminar mixers is discussed in the context of microfluidic devices providing rapid switching and generating temporal waves of concentration.  相似文献   

20.
Flow cytometry is a standard analytical method in cell biology and clinical diagnostics and is widely distributed for the experimental investigation of microparticle characteristics. In this work, the design, realization, and measurement results of a novel planar optofluidic flow cytometric device with an integrated three-dimensional (3D) adjustable optofluidic lens system for forward-scattering∕extinction-based biochemical analysis fabricated by silicon micromachining are presented. To our knowledge, this is the first planar cytometric system with the ability to focus light three-dimensionally on cells∕particles by the application of fluidic lenses. The single layer microfluidic platform enables versatile 3D hydrodynamic sample focusing to an arbitrary position in the channel and incorporates integrated fiber grooves for the insertion of glass fibers. To confirm the fluid dynamics and raytracing simulations and to characterize the sensor, different cell lines and sets of microparticles were investigated by detecting the extinction (axial light loss) signal, demonstrating the high sensitivity and sample discrimination capability of this analysis system. The unique features of this planar microdevice enable new biotechnological analysis techniques due to the highly increased sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号