首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this simulation study was to assess the performance of latent variable models that take into account the complex sampling mechanism that often underlies data used in educational, psychological, and other social science research. Analyses were conducted using the multiple indicator multiple cause (MIMIC) model, which is a flexible and effective tool for relating observed and latent variables. The data were simulated in a hierarchical framework (e.g., individuals nested in schools) so that a multilevel modeling approach would be appropriate. Analyses were conducted accounting for and not accounting for the nested data to determine the impact of ignoring such multilevel data structures in full structural equation models. Results highlight the differences in modeling results when the analytic strategy is congruent with the data structure and what occurs when this congruency is absent. Type I error rates and power for the standard and multilevel methods were similar for within-cluster variables and for the multilevel model with between-cluster variables. However, Type I error rates were inflated for the standard approach when modeling between-cluster variables.  相似文献   

2.
Although structural equation modeling software packages use maximum likelihood estimation by default, there are situations where one might prefer to use multiple imputation to handle missing data rather than maximum likelihood estimation (e.g., when incorporating auxiliary variables). The selection of variables is one of the nuances associated with implementing multiple imputation, because the imputer must take special care to preserve any associations or special features of the data that will be modeled in the subsequent analysis. For example, this article deals with multiple group models that are commonly used to examine moderation effects in psychology and the behavioral sciences. Special care must be exercised when using multiple imputation with multiple group models, as failing to preserve the interactive effects during the imputation phase can produce biased parameter estimates in the subsequent analysis phase, even when the data are missing completely at random or missing at random. This study investigates two imputation strategies that have been proposed in the literature, product term imputation and separate group imputation. A series of simulation studies shows that separate group imputation adequately preserves the multiple group data structure and produces accurate parameter estimates.  相似文献   

3.
When data for multiple outcomes are collected in a multilevel design, researchers can select a univariate or multivariate analysis to examine group-mean differences. When correlated outcomes are incomplete, a multivariate multilevel model (MVMM) may provide greater power than univariate multilevel models (MLMs). For a two-group multilevel design with two correlated outcomes, a simulation study was conducted to compare the performance of MVMM to MLMs. The results showed that MVMM and MLM performed similarly when data were complete or missing completely at random. However, when outcome data were missing at random, MVMM continued to provide unbiased estimates, whereas MLM produced grossly biased estimates and severely inflated Type I error rates. As such, this study provides further support for using MVMM rather than univariate analyses, particularly when outcome data are incomplete.  相似文献   

4.
The nonequivalent groups with anchor test (NEAT) design involves missing data that are missing by design. Three equating methods that can be used with a NEAT design are the frequency estimation equipercentile equating method, the chain equipercentile equating method, and the item-response-theory observed-score-equating method. We suggest an approach to perform a fair comparison of the three methods. The approach is then applied to compare the three equating methods using three data sets from operational tests. For each data set, we examine how the three equating methods perform when the missing data satisfy the assumptions made by only one of these equating methods. The chain equipercentile equating method is somewhat more satisfactory overall than the other methods.  相似文献   

5.
Diemer MA  Li CH 《Child development》2011,82(6):1815-1833
Given associations between critical consciousness and positive developmental outcomes, and given racial, socioeconomic, and generational disparities in political participation, this article examined contextual antecedents of critical consciousness (composed of sociopolitical control and social action) and its consequences for 665 marginalized youth's (ages 15-25) voting behavior. A multiple indicator and multiple causes (MIMIC) model examined racial, ethnic, and age differences in the measurement and means of latent constructs. The structural model suggested that parental and peer sociopolitical support predicts sociopolitical control and social action, which in turn predicts voting behavior, while controlling for civic and political knowledge, race/ethnicity, and age. This illuminates how micro-level actors foster critical consciousness and how the perceived capacity to effect social change and social action participation may redress voting disparities.  相似文献   

6.
Methods of uniform differential item functioning (DIF) detection have been extensively studied in the complete data case. However, less work has been done examining the performance of these methods when missing item responses are present. Research that has been done in this regard appears to indicate that treating missing item responses as incorrect can lead to inflated Type I error rates (false detection of DIF). The current study builds on this prior research by investigating the utility of multiple imputation methods for missing item responses, in conjunction with standard DIF detection techniques. Results of the study support the use of multiple imputation for dealing with missing item responses. The article concludes with a discussion of these results for multiple imputation in conjunction with other research findings supporting its use in the context of item parameter estimation with missing data.  相似文献   

7.
Latent means methods such as multiple-indicator multiple-cause (MIMIC) and structured means modeling (SMM) allow researchers to determine whether or not a significant difference exists between groups' factor means. Strong invariance is typically recommended when interpreting latent mean differences. The extent of the impact of noninvariant intercepts on conclusions made when implementing both MIMIC and SMM methods was the main purpose of this study. The impact of intercept noninvariance on Type I error rates, power, and two model fit indices when using MIMIC and SMM approaches under various conditions were examined. Type I error and power were adversely affected by intercept noninvariance. Although the fit indices did not detect small misspecifications in the form of noninvariant intercepts, one did perform more optimally.  相似文献   

8.
The examinee‐selected‐item (ESI) design, in which examinees are required to respond to a fixed number of items in a given set of items (e.g., choose one item to respond from a pair of items), always yields incomplete data (i.e., only the selected items are answered and the others have missing data) that are likely nonignorable. Therefore, using standard item response theory models, which assume ignorable missing data, can yield biased parameter estimates so that examinees taking different sets of items to answer cannot be compared. To solve this fundamental problem, in this study the researchers utilized the specific objectivity of Rasch models by adopting the conditional maximum likelihood estimation (CMLE) and pairwise estimation (PE) methods to analyze ESI data, and conducted a series of simulations to demonstrate the advantages of the CMLE and PE methods over traditional estimation methods in recovering item parameters in ESI data. An empirical data set obtained from an experiment on the ESI design was analyzed to illustrate the implications and applications of the proposed approach to ESI data.  相似文献   

9.
DIF分析实际应用中的常见问题及其研究新进展   总被引:1,自引:0,他引:1  
多等级计分题、小样本、匹配变量不纯以及DIF检验后的原因分析是DIF检验面临的常见问题,对多等级计分题目进行DSF分析,小样本情况下DIF检测的平滑方法,匹配变量不纯情况下采用MIMIC法,以及运用Logistic模型进行DIF检验后的原因分析是DIF研究中的一些新进展。对这些进展的分析使我们相信,多种检验方法的配合使用、运用DIF研究进行多维IRT框架下的潜在变量探究等,都有可能使DIF研究成为测量学未来的基础研究领域之一。  相似文献   

10.
Myriad approaches for handling missing data exist in the literature. However, few studies have investigated the tenability and utility of these approaches when used with intensive longitudinal data. In this study, we compare and illustrate two multiple imputation (MI) approaches for coping with missingness in fitting multivariate time-series models under different missing data mechanisms. They include a full MI approach, in which all dependent variables and covariates are imputed simultaneously, and a partial MI approach, in which missing covariates are imputed with MI, whereas missingness in the dependent variables is handled via full information maximum likelihood estimation. We found that under correctly specified models, partial MI produces the best overall estimation results. We discuss the strengths and limitations of the two MI approaches, and demonstrate their use with an empirical data set in which children’s influences on parental conflicts are modeled as covariates over the course of 15 days (Schermerhorn, Chow, & Cummings, 2010).  相似文献   

11.
The purpose of this study is to investigate the effects of missing data techniques in longitudinal studies under diverse conditions. A Monte Carlo simulation examined the performance of 3 missing data methods in latent growth modeling: listwise deletion (LD), maximum likelihood estimation using the expectation and maximization algorithm with a nonnormality correction (robust ML), and the pairwise asymptotically distribution-free method (pairwise ADF). The effects of 3 independent variables (sample size, missing data mechanism, and distribution shape) were investigated on convergence rate, parameter and standard error estimation, and model fit. The results favored robust ML over LD and pairwise ADF in almost all respects. The exceptions included convergence rates under the most severe nonnormality in the missing not at random (MNAR) condition and recovery of standard error estimates across sample sizes. The results also indicate that nonnormality, small sample size, MNAR, and multicollinearity might adversely affect convergence rate and the validity of statistical inferences concerning parameter estimates and model fit statistics.  相似文献   

12.
Meta-analytic structural equation modeling (MASEM) refers to a set of meta-analysis techniques for combining and comparing structural equation modeling (SEM) results from multiple studies. Existing approaches to MASEM cannot appropriately model between-studies heterogeneity in structural parameters because of missing correlations, lack model fit assessment, and suffer from several theoretical limitations. In this study, we address the major shortcomings of existing approaches by proposing a novel Bayesian multilevel SEM approach. Simulation results showed that the proposed approach performed satisfactorily in terms of parameter estimation and model fit evaluation when the number of studies and the within-study sample size were sufficiently large and when correlations were missing completely at random. An empirical example about the structure of personality based on a subset of data was provided. Results favored the third factor structure over the hierarchical structure. We end the article with discussions and future directions.  相似文献   

13.
Small samples are common in growth models due to financial and logistical difficulties of following people longitudinally. For similar reasons, longitudinal studies often contain missing data. Though full information maximum likelihood (FIML) is popular to accommodate missing data, the limited number of studies in this area have found that FIML tends to perform poorly with small-sample growth models. This report demonstrates that the fault lies not with how FIML accommodates missingness but rather with maximum likelihood estimation itself. We discuss how the less popular restricted likelihood form of FIML, along with small-sample-appropriate methods, yields trustworthy estimates for growth models with small samples and missing data. That is, previously reported small sample issues with FIML are attributable to finite sample bias of maximum likelihood estimation not direct likelihood. Estimation issues pertinent to joint multiple imputation and predictive mean matching are also included and discussed.  相似文献   

14.
In this article, grade point average (GPA) is considered a missing data technique for unavailable grades in school grade records. In Study 1, theoretical and empirical differences between GPA and seven alternative missing grade techniques were considered. These seven techniques are subject mean substitution, corrected subject mean, subject correlation substitution, regression imputation, expectation maximization algorithm imputation and two multiple imputation methods-stochastic regression imputation and data augmentation., The missing grade techniques differ greatly. Data augmentation and stochastic regression imputation appear to be superior as missing grade techniques. In Study 2, the completed grade records (observed and imputed values) were used in two prediction analyses of academic achievement. One analysis was based on unweighed grades, the other on weighed grades. In both analyses, alternative missing grade methods produced better and more consistent predictions. It is concluded that some alternative missing grade methods are superior to GPA.  相似文献   

15.
A 2-stage procedure for estimation and testing of observed measure correlations in the presence of missing data is discussed. The approach uses maximum likelihood for estimation and the false discovery rate concept for correlation testing. The method can be used in initial exploration-oriented empirical studies with missing data, where it is of interest to estimate manifest variable interrelationship indexes and test hypotheses about their population values. The procedure is applicable also with violations of the underlying missing at random assumption, via inclusion of auxiliary variables. The outlined approach is illustrated with data from an aging research study.  相似文献   

16.
The multiple indicators multiple causes (MIMIC) latent class analysis (LCA) model is an excellent classification method when researchers cannot find a "gold standard" to classify participants. The MIMIC-LCA model includes features of a typical LCA model and also introduces a new relation between the latent class and covariates. In other words, a logistic regression type of analysis between participants' categorical latent status and their background information is added. Detailed statistical setups of the MIMIC-LCA model and algorithmic procedures are derived. The model features, parameter estimations, and model selections for MIMIC-LCA models are also presented. Specifically, the MIMIC-LCA model is estimated by a generalized expectation-maximization algorithm under the maximum likelihood frameworks. A substantive application of the MIMIC-LCA model in diagnosing alcoholics and, in particular, examining potential risk factors for alcoholism is demonstrated.  相似文献   

17.
Allowance for multiple chances to answer constructed response questions is a prevalent feature in computer‐based homework and exams. We consider the use of item response theory in the estimation of item characteristics and student ability when multiple attempts are allowed but no explicit penalty is deducted for extra tries. This is common practice in online formative assessments, where the number of attempts is often unlimited. In these environments, some students may not always answer‐until‐correct, but may rather terminate a response process after one or more incorrect tries. We contrast the cases of graded and sequential item response models, both unidimensional models which do not explicitly account for factors other than ability. These approaches differ not only in terms of log‐odds assumptions but, importantly, in terms of handling incomplete data. We explore the consequences of model misspecification through a simulation study and with four online homework data sets. Our results suggest that model selection is insensitive for complete data, but quite sensitive to whether missing responses are regarded as informative (of inability) or not (e.g., missing at random). Under realistic conditions, a sequential model with similar parametric degrees of freedom to a graded model can account for more response patterns and outperforms the latter in terms of model fit.  相似文献   

18.
Many large-scale educational surveys have moved from linear form design to multistage testing (MST) design. One advantage of MST is that it can provide more accurate latent trait (θ) estimates using fewer items than required by linear tests. However, MST generates incomplete response data by design; hence, questions remain as to how to calibrate items using the incomplete data from MST design. Further complication arises when there are multiple correlated subscales per test, and when items from different subscales need to be calibrated according to their respective score reporting metric. The current calibration-per-subscale method produced biased item parameters, and there is no available method for resolving the challenge. Deriving from the missing data principle, we showed when calibrating all items together the Rubin's ignorability assumption is satisfied such that the traditional single-group calibration is sufficient. When calibrating items per subscale, we proposed a simple modification to the current calibration-per-subscale method that helps reinstate the missing-at-random assumption and therefore corrects for the estimation bias that is otherwise existent. Three mainstream calibration methods are discussed in the context of MST, they are the marginal maximum likelihood estimation, the expectation maximization method, and the fixed parameter calibration. An extensive simulation study is conducted and a real data example from NAEP is analyzed to provide convincing empirical evidence.  相似文献   

19.
This article examines whether Bayesian estimation with minimally informed prior distributions can alleviate the estimation problems often encountered with fitting the true score multitrait–multimethod structural equation model with split-ballot data. In particular, the true score multitrait–multimethod structural equation model encounters an empirical underidentification when (a) latent variable correlations are homogenous, and (b) fitted to data from a 2-group split-ballot design; an understudied case of empirical underidentification due to a planned missingness (i.e., split-ballot) design. A Monte Carlo simulation and 3 empirical examples showed that Bayesian estimation performs better than maximum likelihood (ML) estimation. Therefore, we suggest using Bayesian estimation with minimally informative prior distributions when estimating the true score multitrait–multimethod structural equation model with split-ballot data. Furthermore, given the increase in planned missingness designs in psychological research, we also suggest using Bayesian estimation as a potential alternative to ML estimation for analyses using data from planned missingness designs.  相似文献   

20.
Intensive longitudinal data (ILD) have become increasingly common in the social and behavioral sciences; count variables, such as the number of daily smoked cigarettes, are frequently-used outcomes in many ILD studies. We demonstrate a generalized extension of growth mixture modeling (GMM) to Poisson-distributed ILD for identifying qualitatively distinct trajectories in the context of developmental heterogeneity in count data. Accounting for the Poisson outcome distribution is essential for correct model identification and estimation. In addition, setting up the model in a way that is conducive to ILD measures helps with data complexities - large data volume, missing observations, and differences in sampling frequency across individuals. We present technical details of model fitting, summarize an empirical example of patterns of smoking behavior change, and describe research questions the generalized GMM helps to address.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号