首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This study aimed to evaluate the within- and between-session reliability of force, velocity and power performances and to assess the force-velocity relationship during the deadlift high pull (DHP). Nine participants performed two identical sessions of DHP with loads ranging from 30 to 70% of body mass. The force was measured by a force plate under the participants’ feet. The velocity of the ‘body + lifted mass’ system was calculated by integrating the acceleration and the power was calculated as the product of force and velocity. The force-velocity relationships were obtained from linear regression of both mean and peak values of force and velocity. The within- and between-session reliability was evaluated by using coefficients of variation (CV) and intraclass correlation coefficients (ICC). Results showed that DHP force-velocity relationships were significantly linear (R² > 0.90, p < 0.05). Within sessions and between sessions, mean and peak forces during DHP showed a strong agreement (CV < 3%, ICC > 0.94), mean and peak velocities showed a good agreement (CV < 9%, 0.78 < ICC < 0.92). It was concluded that DHP performance and its force-velocity relationships are highly reliable and can therefore be utilised as a tool to characterise individuals’ muscular profiles.  相似文献   

2.
The purpose of this study was to determine the reliability of maximum voluntary isometric force (MVIF), cross-sectional area (CSA) and force per unit CSA measures, of the first dorsal interosseus (FDI) muscle, using a custom-built dynamometer and ultrasonography. Twenty-seven participants completed MVIF and CSA measurements on two separate occasions under the same conditions. Reliability was determined using paired samples t-tests, systematic bias ratio and ratio limits of agreement (RLoA), intra-class correlation (ICC) and coefficient of variation (CV). MVIF of the FDI muscle (mean ± s; 31.8 ± 7.6 N and 31.6 ± 7.3 N) was not different between trials (= 0.63); RLoA between trials were 1.00 ×/÷ 1.09, ICC = 0.990 and CV = 3.22%. CSA of the FDI muscle (22.6 ± 6.9 and 22.9 ± 6.9 mm2) was also not different between trials (= 0.31); RLoA between trials were 0.98 ×/÷ 1.19, ICC = 0.979 and CV = 6.61%. Force per unit CSA was not different between trials (1.49 ± 0.43 and 1.46 ± 0.44 N·mm2; = 0.18), RLoA were 1.02 ×/÷ 1.17, ICC = 0.985 and CV = 5.76%. The techniques used to determine MVIF and CSA of the FDI muscle were reliable and can be combined to calculate force per unit CSA.  相似文献   

3.
ABSTRACT

The aim of the present investigation was to analyze the validity and reliability of a novel iPhone app (CODTimer) for the measurement of total time and interlimb asymmetry in the 5 + 5 change of direction test (COD). To do so, twenty physically active adolescent athletes (age = 13.85 ± 1.34 years) performed six repetitions in the COD test while being measured with a pair of timing gates and CODTimer. A total of 120 COD times measured both with the timing gates and the app were then compared for validity and reliability purposes. There was an almost perfect correlation between the timing gates and the CODTimer app for the measurement of total time (r = 0.964; 95% Confidence interval (CI) = 0.95–1.00; Standard error of the estimate = 0.03 s.; p < 0.001). Moreover, non-significant, trivial differences were observed between devices for the measurement of total time and interlimb asymmetry (Effect size < 0.2, p > 0.05). Similar levels of reliability were observed between the timing gates and the app for the measurement of the 6 different trials of each participant (Timing gates: Intraclass correlation coefficient (ICC) = 0.651–0.747, Coefficient of variation (CV) = 2.6–3.5%; CODTimer: ICC = 0.671–0.840, CV = 2.2–3.2%). The results of the present study show that change of direction performance can be measured in a valid, reliable way using a novel iPhone app.  相似文献   

4.
Whilst previous research has highlighted significant relationships between golfers’ clubhead velocity (CHV) and their vertical jump height and maximum strength, these field-based protocols were unable to measure the actual vertical ground reaction force (vGRF) variables that may correlate to performance. The aim of this study was to investigate relationships between isometric mid-thigh pull (IMTP), countermovement jump (CMJ), squat jump (SJ) and drop jump (DJ) vGRF variables and CHV in highly skilled golfers. Twenty-seven male category 1 golfers performed IMTP, CMJ, SJ and DJ on a dual force platform. The vertical jumps were used to measure positive impulse during different stretch-shortening cycle velocities, with the IMTP assessing peak force (PF) and rate of force development (RFD). Clubhead velocity was measured using a TrackMan launch monitor at a golf driving range. Pearsons correlation coefficient analyses revealed significant relationships between peak CHV and CMJ positive impulse (r = 0.788, < 0.001), SJ positive impulse (r = 0.692; < 0.001), DJ positive impulse (r = 0.561, < 0.01), PF (r = 0.482, < 0.01), RFD from 0–150 ms (r = 0.343, < 0.05) and RFD from 0–200 ms (r = 0.398, < 0.05). The findings from this investigation indicate strong relationships between vertical ground reaction force variables and clubhead velocity.  相似文献   

5.
The purpose of this study was to quantify the inter-session reliability of force–velocity–power profiling and estimated maximal strength in youth. Thirty-six males (11–15 years old) performed a ballistic supine leg press test at five randomized loads (80%, 100%, 120%, 140%, and 160% body mass) on three separate occasions. Peak and mean force, power, velocity, and peak displacement were collected with a linear position transducer attached to the weight stack. Mean values at each load were used to calculate different regression lines and estimate maximal strength, force, velocity, and power. All variables were found reliable (change in the mean [CIM] = ? 1 to 14%; coefficient of variation [CV] = 3–18%; intraclass correlation coefficient [ICC] = 0.74–0.99), but were likely to benefit from a familiarization, apart from the unreliable maximal force/velocity ratio (CIM = 0–3%; CV = 23–25%; ICC = 0.35–0.54) and load at maximal power (CIM = ? 1 to 2%; CV = 10–13%; ICC = 0.26–0.61). Isoinertial force–velocity–power profiling and maximal strength in youth can be assessed after a familiarization session. Such profiling may provide valuable insight into neuromuscular capabilities during growth and maturation and may be used to monitor specific training adaptations.  相似文献   

6.
The aim of this study was to clarify the intra- and inter-rater reliability of the rate of force development in hip abductor muscle force measurements using a hand-held dynamometer. Thirty healthy adults were separately assessed by two independent raters on two separate days. Rate of force development was calculated from the slope of the force-time curve that was divided into four time intervals (50, 100, 200, and 300 ms). The highest values of the three trials were used for statistical analysis. The intra-class correlation coefficient with a 95% confidence interval, standard error of measurement, and minimal detectable change at the 95% confidence level were calculated for each interval. For assessment of systematic error, Bland-Altman analysis was used. The results indicated that intra- and inter-rater reliability of the highest values at all intervals were sufficient (intra-class correlation coefficient > .7). The Bland-Altman analysis did not show systematic error in either reliability measure.  相似文献   

7.
ABSTRACT

This study examined the reliability and validity of three methods of estimating the one-repetition maximum (1RM) during the free-weight prone bench pull exercise. Twenty-six men (22 rowers and four weightlifters) performed an incremental loading test until reaching their 1RM, followed by a set of repetitions-to-failure. Eighteen participants were re-tested to conduct the reliability analysis. The 1RM was estimated through the lifts-to-failure equations proposed by Lombardi and O’Connor, general load-velocity (L-V) relationships proposed by Sánchez-Medina and Loturco and the individual L-V relationships modelled using four (multiple-point method) or only two loads (two-point method). The direct method provided the highest reliability (coefficient of variation [CV] = 2.45% and intraclass correlation coefficient [ICC] = 0.97), followed by the Lombardi’s equation (CV = 3.44% and ICC = 0.94), and no meaningful differences were observed between the remaining methods (CV range = 4.95–6.89% and ICC range = 0.81–0.91). The lifts-to-failure equations overestimated the 1RM (3.43–4.08%), the general L-V relationship proposed by Sánchez-Medina underestimated the 1RM (?3.77%), and no significant differences were observed for the remaining prediction methods (?0.40–0.86%). The individual L-V relationship could be recommended as the most accurate method for predicting the 1RM during the free-weight prone bench pull exercise.  相似文献   

8.
9.
Quantifying soft tissue motion following impact is important in human motion analysis as soft tissues attenuate potentially injurious forces resulting from activities such as running and jumping. This study determined the reliability of leg soft tissue position and velocity following heel impacts. A grid of black dots was applied to the skin of the right leg and foot (n = 20). Dots were automatically detected (ProAnalyst®) from high-speed records of pendulum and drop impacts. Three trained measurers selected columns of dots on each participant for analysis; one measurer 6 months later. Between- and within-measurer differences in kinematic variables were all relatively small (<0.8 cm for position; <3.7 cm/s for velocity) between-measurers and (<0.5 cm for position; <2.6 cm/s for velocity) within-measurer. Good (coefficients of variation (CV) ≤ 10%) to acceptable (CV > 10% and ≤20%) reliability was shown for 95% of the position measures, with mean CVs of 10% and 11% within-measurers and between-measures, respectively. Velocity measures were less reliable; 40% of the measures showed good to marginal (CV > 20% and ≤30%) reliability. This study established that leg soft tissue position data from skin markers could be obtained with good to acceptable reliability following heel impacts. Velocity data were less reliable but still acceptable in many cases.  相似文献   

10.
Lower limb isometric strength is a key parameter to monitor the training process or recognise muscle weakness and injury risk. However, valid and reliable methods to evaluate it often require high-cost tools. The aim of this study was to analyse the concurrent validity and reliability of a low-cost digital dynamometer for measuring isometric strength in lower limb. Eleven physically active and healthy participants performed maximal isometric strength for: flexion and extension of ankle, flexion and extension of knee, flexion, extension, adduction, abduction, internal and external rotation of hip. Data obtained by the digital dynamometer were compared with the isokinetic dynamometer to examine its concurrent validity. Data obtained by the digital dynamometer from 2 different evaluators and 2 different sessions were compared to examine its inter-rater and intra-rater reliability. Intra-class correlation (ICC) for validity was excellent in every movement (ICC > 0.9). Intra and inter-tester reliability was excellent for all the movements assessed (ICC > 0.75). The low-cost digital dynamometer demonstrated strong concurrent validity and excellent intra and inter-tester reliability for assessing isometric strength in the main lower limb movements.  相似文献   

11.
The purpose of this study was to determine the between day reliability of power-time measures calculated with data collected using the linear position transducer or the force plate independently, or a combination of the two technologies. Twenty-five male rugby union players performed three jump squats on two occasions one week apart. Ground reaction forces were measured via a force plate and position data were collected using a linear position transducer. From these data, a number of power-time variables were calculated for each method. The force plate, linear position transducer and a combined method were all found to be a reliable means of measuring peak power (ICC = 0.87‐0.95, CV = 3.4%‐8.0%). The absolute consistency of power-time measures varied between methods (CV = 8.0%‐53.4%). Relative consistency of power-time measures was generally comparable between methods and measures, and for many variables was at an acceptable level (ICC = 0.77‐0.94). Although a number of time-dependent power variables can be reliably calculated from data acquired from the three methods investigated, the reliability of a number of these measures is below that which is acceptable for use in research and for practical applications.  相似文献   

12.
A number of field-based investigations have evidenced practically significant relationships between clubhead velocity (CHV), vertical jump performance and maximum strength. Unfortunately, whilst these investigations provide a great deal of external validity, they are unable to ascertain vertical ground reaction force (vGRF) variables that may relate to golfers’ CHVs. This investigation aimed to assess if the variance in European Challenge Tour golfers’ CHVs could be predicted by countermovement jump (CMJ) positive impulse (PI), isometric mid-thigh pull (IMTP) peak force (PF) and rate of force development (RFD) from 0–50 ms, 0–100 ms, 0–150 ms and 0–200 ms. Thirty-one elite level European Challenge Tour golfers performed a CMJ and IMTP on dual force plates at a tournament venue, with CHV measured on a driving range. Hierarchical multiple regression results indicated that the variance in CHV was significantly predicted by all four models (model one R2 = 0.379; model two R2 = 0.392, model three R2 = 0.422, model four R2 = 0.480), with Akaike’s information criterion indicating that model one was the best fit. Individual standardised beta coefficients revealed that CMJ PI was the only significant variable, accounting for 37.9% of the variance in European Challenge Tour Golfers’ CHVs.  相似文献   

13.
Isometric tests have been used to assess rate of force development (RFD), however variation in testing methodologies are known to affect performance outcomes. The aim of this study was to assess the RFD in the isometric squat (ISqT) using two test protocols and two testing angles. Eleven participants (age: 26.8 ± 4.5 years, strength training experience: 7.1 ± 3.03 years) completed test and retest sessions one week apart, whereby two test protocols with respect to duration and instructions were compared. Isometric peak force (ISqTpeak) and isometric explosive force (ISqTexp) tests were assessed at two joint angles (knee flexion angle 100° and 125°). Force-time traces were sampled and subsequently analysed for RFD measures. Average and instantaneous RFD variables did not meet reliability minimum criteria in ISqTpeak at 100° or 125°. The ISqTexp test at 100° met reliability criteria in the RFD 0–200 and 0–250ms variables. The ISqTexp test at 125° met reliability criteria in the RFD 0–150, 0–200 and 0–250ms variables. Force-time characteristics were optimized at the higher knee joint angle. Average and instantaneous RFD measures obtained using a traditional peak force test do not meet basic reliability criteria. Researchers assessing multi-joint RFD should employ the explosive RFD test protocol as opposed to the traditional isometric peak force protocol.  相似文献   

14.
Abstract

There has been no previous investigation of the concurrent validity and reliability of the current 5 Hz global positioning system (GPS) to assess sprinting speed or the reliability of integrated GPS–accelerometer technology. In the present study, we wished to determine: (1) the concurrent validity and reliability of a GPS and timing gates to measure sprinting speed or distance, and (2) the reliability of proper accelerations recorded via GPS–accelerometer integration. Nineteen elite youth rugby league players performed two over-ground sprints and were simultaneously assessed using GPS and timing gates. The GPS measurements systematically underestimated both distance and timing gate speed. The GPS measurements were reliable for all variables of distance and speed (coefficient of variation [CV] = 1.62% to 2.3%), particularly peak speed (95% limits of agreement [LOA] = 0.00 ± 0.8 km · h?1; CV = 0.78%). Timing gates were more reliable (CV = 1% to 1.54%) than equivalent GPS measurements. Accelerometer measurements were least reliable (CV = 4.69% to 5.16%), particularly for the frequency of proper accelerations (95% LOA = 1.00 ± 5.43; CV = 14.12%). Timing gates and GPS were found to reliably assess speed and distance, although the validity of the GPS remains questionable. The error found in accelerometer measurements indicates the limits of this device for detecting changes in performance.  相似文献   

15.
This study aimed to (1) assess the reliability of the force, velocity, and power output variables measured by a force plate and a linear velocity transducer (LVT) for both the unconstrained and constrained loaded countermovement jump (CMJ), and (2) examine the effect of both the CMJ type and the measurement method on the magnitudes of the same variables. Twenty-three men were tested on the free CMJ and the CMJ constrained by a Smith machine. Maximum values of force, velocity, and power were recorded by a force plate and by a LVT attached to a bar loaded by 17, 30, 45, 60, and 75 kg. The reliability of all mechanical variables proved to be high (ICC > 0.70; CV < 10%) and similar for two CMJ types. However, force plate-derived measures displayed greater reliability than the LVT. The LVT also markedly overestimated the magnitudes of the mechanical variables, particularly at lower external loads. Therefore, although both jump types and both methods could be acceptable for routine testing, we recommend the force platform due to a higher reliability and more accurate magnitudes of the obtained variables. The unconstrained loaded CMJ could also be recommended due to the simpler equipment needed.  相似文献   

16.
Examining a countermovement jump (CMJ) force-time curve related to net impulse might be useful in monitoring athletes' performance. This study aimed to investigate the reliability of alternative net impulse calculation and net impulse characteristics (height, width, rate of force development, shape factor, and proportion) and validate against the traditional calculation in the CMJ. Twelve participants performed the CMJ in two sessions (48 hours apart) for test–retest reliability. Twenty participants were involved for the validity assessment. Results indicated intra-class correlation coefficient (ICC) of ≥ 0.89 and coefficient of variation (CV) of ≤ 5.1% for all of the variables except for rate of force development (ICC = 0.78 and CV = 22.3%). The relationship between the criterion and alternative calculations was r = 1.00. While the difference between them was statistically significant (245.96 ± 63.83 vs. 247.14 ± 64.08 N s, p < 0.0001), the effect size was trivial and deemed practically minimal (d = 0.02). In conclusion, variability of rate of force development will pose a greater challenge in detecting performance changes. Also, the alternative calculation can be used practically in place of the traditional calculation to identify net impulse characteristics and monitor and study athletes' performance in greater depth.  相似文献   

17.
Numerous skill batteries assess fundamental motor skill (e.g., kick, hop) competence. Few skill batteries examine lifelong physical activity skill competence (e.g., resistance training). This study aimed to develop and assess the content validity, test-retest and inter-rater reliability of the “Lifelong Physical Activity Skills Battery”. Development of the skill battery occurred in three stages: i) systematic reviews of lifelong physical activity participation rates and existing motor skill assessment tools, ii) practitioner consultation and iii) research expert consultation. The final battery included eight skills: grapevine, golf swing, jog, push-up, squat, tennis forehand, upward dog and warrior I. Adolescents (28 boys, 29 girls; M = 15.8 years, SD = 0.4 years) completed the Lifelong Physical Activity Skills Battery on two occasions two weeks apart. The skill battery was highly reliable (ICC = 0.84, 95% CI = 0.72–0.90) with individual skill reliability scores ranging from moderate (warrior I; ICC = 0.56) to high (tennis forehand; ICC = 0.82). Typical error (4.0; 95% CI 3.4–5.0) and proportional bias (r = ?0.21, p = .323) were low. This study has provided preliminary evidence for the content validity and reliability of the Lifelong Physical Activity Skills Battery in an adolescent population.  相似文献   

18.
Understanding the impact of friction in sled sprinting allows the quantification of kinetic outputs and the effective loading experienced by the athlete. This study assessed changes in the coefficient of friction (µk) of a sled sprint-training device with changing mass and speed to provide a means of quantifying effective loading for athletes. A common sled equipped with a load cell was towed across an athletics track using a motorised winch under variable sled mass (33.1–99.6 kg) with constant speeds (0.1 and 0.3 m · s?1), and with constant sled mass (55.6 kg) and varying speeds (0.1–6.0 m · s?1). Mean force data were analysed, with five trials performed for each condition to assess the reliability of measures. Variables were determined as reliable (ICC > 0.99, CV < 4.3%), with normal-force/friction-force and speed/coefficient of friction relationships well fitted with linear (R2 = 0.994–0.995) and quadratic regressions (R2 = 0.999), respectively (P < 0.001). The linearity of composite friction values determined at two speeds, and the range in values from the quadratic fit (µk = 0.35–0.47) suggested µk and effective loading were dependent on instantaneous speed on athletics track surfaces. This research provides a proof-of-concept for the assessment of friction characteristics during sled towing, with a practical example of its application in determining effective loading and sled-sprinting kinetics. The results clarify effects of friction during sled sprinting and improve the accuracy of loading applications in practice and transparency of reporting in research.  相似文献   

19.
Little is known about the reliability, validity and smallest detectable differences of selected kinetic and temporal variables recorded by the Zebris FDM-THQ instrumented treadmill especially during running. Twenty male participants (age = 31.9 years (±5.6), height = 1.81 m (±0.08), mass = 80.2 kg (±9.5), body mass index = 24.53 kg/m2 (±2.53)) walked (5 km/h) and ran (10 and 15 km/h) on an instrumented treadmill, wearing running shoes fitted with Pedar-X insoles. A test-double retest protocol was conducted over two consecutive days. Maximal vertical force (Fmax), contact time (CT) and flight time (FT) data from 10 consecutive steps were collected. Within- and between-day reliability, smallest detectable differences (SDD) and validity (95% limits of agreement (LOA)) were calculated. ICC values for the Zebris for Fmax were acceptable (ICC ≥ 0.7) while CT and FT reliability indices were predominantly good (ICC ≥ 0.8) to excellent (ICC ≥ 0.9). The Zebris significantly underestimated Fmax when compared with the Pedar-X. The 95% LOA increased with speed. SDD ranged between 96 N and 169 N for Fmax, 0.017s and 0.055s for CT and 0.021s and 0.026s for FT. In conclusion, Zebris reliability was acceptable to excellent for the variables examined, but inferior in comparison with Pedar-X. With increased running speeds, a bias effect (underestimation) existed for the Zebris compared with Pedar-X.  相似文献   

20.
The purpose of the present study was to evaluate the concurrent validity and test-retest repeatability of torso-worn IMU-derived power and jump height in a counter-movement jump test. Twenty-seven healthy recreationally active males (age, 21.9 [SD 2.0] y, height, 1.76 [0.7] m, mass, 73.7 [10.3] kg) wore an IMU and completed three counter-movement jumps a week apart. A force platform and a 3D motion analysis system were used to concurrently measure the jumps and subsequently derive power and jump height (based on take-off velocity and flight time). The IMU significantly overestimated power (mean difference = 7.3 W/kg; P < 0.001) compared to force-platform-derived power but good correspondence between methods was observed (Intra-class correlation coefficient [ICC] = 0.69). IMU-derived power exhibited good reliability (ICC = 0.67). Velocity-derived jump heights exhibited poorer concurrent validity (ICC = 0.72 to 0.78) and repeatability (ICC = 0.68) than flight-time-derived jump heights, which exhibited excellent validity (ICC = 0.93 to 0.96) and reliability (ICC = 0.91). Since jump height and power are closely related, and flight-time-derived jump height exhibits excellent concurrent validity and reliability, flight-time-derived jump height could provide a more desirable measure compared to power when assessing athletic performance in a counter-movement jump with IMUs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号