首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Left-handed baseball pitchers are thought to have a number of theoretical advantages compared to right-handed pitchers; however, there is limited scientific research detailing differences in the pitching mechanics of right- and left-handed pitchers. Therefore, this study sought to understand whether any kinematic and kinetic differences existed between right- and left-handed baseball pitchers. A total of 52 collegiate pitchers were included in this study; 26 left-handed pitchers were compared to 26 age-, height-, weight- and ball velocity-matched right-handed pitchers. Demographic information, passive shoulder range of motion and kinematic and kinetic data were obtained for each pitcher participating in the study. Results indicated that left-handed pitchers did not have a glenohumeral internal rotation deficit as compared to right-handed pitchers. Kinematic analysis indicated that elbow flexion, horizontal glenohumeral abduction and wrist coronal plane motion were significantly different between the two study cohorts. It was also noted that left-handed pitchers had increased elbow varus moments. The findings of this study suggest that pitching coaches should be aware that there are biomechanical differences between left- and right-handed pitchers.  相似文献   

2.
Controversy continues whether curveballs are stressful for young baseball pitchers. Furthermore, it is unproven whether professional baseball pitchers have fewer kinematic differences between fastballs and off-speed pitches than lower level pitchers. Kinematic and kinetic data were measured for 111 healthy baseball pitchers (26 youth, 21 high school, 20 collegiate, 26 minor league, and 18 major league level) throwing fastballs, curveballs, and change-ups in an indoor biomechanics laboratory with a high-speed, automated digitising system. Differences between pitch types and between competition levels were analysed with repeated measures ANOVA. Shoulder and elbow kinetics were greater in fastballs than in change-ups, while curveball kinetics were not different from the other two types of pitches. Kinematic angles at the instant of ball release varied between pitch types, while kinematic angles at the instant of lead foot contact varied between competition levels. There were no significant interactions between pitch type and competition level, meaning that kinetic and kinematic differences between pitch types did not vary by competition level. Like previous investigations, this study did not support the theory that curveballs are relatively more stressful for young pitchers. Although pitchers desire consistent kinematics, there were differences between pitch types, independent of competition level.  相似文献   

3.
The purpose of this study was to quantify and compare kinematic, temporal, and kinetic characteristics of American and Korean professional pitchers in order to investigate differences in pitching mechanics, performance, and injury risks among two different cultures and populations of baseball pitchers. Eleven American and eight Korean healthy professional baseball pitchers threw multiple fastball pitches off an indoor throwing mound positioned at regulation distance from home plate. A Motion Analysis three-dimensional automatic digitizing system was used to collect 200 Hz video data from four electronically synchronized cameras. Twenty kinematic, six temporal, and 11 kinetic variables were analyzed at lead foot contact, during the arm cocking and arm acceleration phases, at ball release, and during the arm deceleration phase. A radar gun was used to quantify ball velocity. At lead foot contact, the American pitchers had significantly greater horizontal abduction of the throwing shoulder, while Korean pitchers exhibited significantly greater abduction and external rotation of the throwing shoulder. During arm cocking, the American pitchers displayed significantly greater maximum shoulder external rotation and maximum pelvis angular velocity. At the instant of ball release, the American pitchers had significantly greater forward trunk tilt and ball velocity and significantly less knee flexion, which help explain why the American pitchers had 10% greater ball velocity compared to the Korean pitchers. The American pitchers had significantly greater maximum shoulder internal rotation torque and maximum elbow varus torque during arm cocking, significantly greater elbow flexion torque during arm acceleration, and significantly greater shoulder and elbow proximal forces during arm deceleration. While greater shoulder and elbow forces and torques generated in the American pitchers helped generate greater ball velocity for the American group, these greater kinetics may predispose this group to a higher risk of shoulder and elbow injuries.  相似文献   

4.
The purpose of this study was to determine how often flaws in pitching mechanics identified from biomechanical analysis are corrected. The biomechanics of 46 baseball pitchers were evaluated twice, with an average of 12 months (range 2–48 months) between evaluations. Pitchers were healthy at the time of both evaluations, competing at the high school, college, minor league or Major League level. After warming up, each participant pitched 10 full-effort fastballs. Automated three-dimensional motion analysis was used to compute eight kinematic parameters which were compared with a database of elite professional pitchers. Flaws—defined as deviations from the elite range—were explained to each participant or coach after his initial evaluation. Data from the second evaluation revealed that 44% of all flaws had been corrected. Flaws at the instant of foot contact (stride length, front foot position, shoulder external rotation, shoulder abduction, elbow flexion) or slightly after foot contact (time between pelvis rotation and upper trunk rotation) seemed to be corrected more often than flaws near the time of ball release (knee extension and shoulder abduction). Future research may determine which level athletes or which training methods are most effective for correcting flaws.  相似文献   

5.
Baseball     
The purpose of this study was to quantify and compare kinematic, temporal, and kinetic characteristics of American and Korean professional pitchers in order to investigate differences in pitching mechanics, performance, and injury risks among two different cultures and populations of baseball pitchers. Eleven American and eight Korean healthy professional baseball pitchers threw multiple fastball pitches off an indoor throwing mound positioned at regulation distance from home plate. A Motion Analysis three‐dimensional automatic digitizing system was used to collect 200 Hz video data from four electronically synchronized cameras. Twenty kinematic, six temporal, and 11 kinetic variables were analyzed at lead foot contact, during the arm cocking and arm acceleration phases, at ball release, and during the arm deceleration phase. A radar gun was used to quantify ball velocity. At lead foot contact, the American pitchers had significantly greater horizontal abduction of the throwing shoulder, while Korean pitchers exhibited significantly greater abduction and external rotation of the throwing shoulder. During arm cocking, the American pitchers displayed significantly greater maximum shoulder external rotation and maximum pelvis angular velocity. At the instant of ball release, the American pitchers had significantly greater forward trunk tilt and ball velocity and significantly less knee flexion, which help explain why the American pitchers had 10% greater ball velocity compared to the Korean pitchers. The American pitchers had significantly greater maximum shoulder internal rotation torque and maximum elbow varus torque during arm cocking, significantly greater elbow flexion torque during arm acceleration, and significantly greater shoulder and elbow proximal forces during arm deceleration. While greater shoulder and elbow forces and torques generated in the American pitchers helped generate greater ball velocity for the American group, these greater kinetics may predispose this group to a higher risk of shoulder and elbow injuries.  相似文献   

6.
The aim of this study was to compare and evaluate the kinematics of baseball pitchers who participated in the 1996 XXVI Centennial Olympic Games. Two synchronized video cameras operating at 120 Hz were used to video 48 pitchers from Australia, Japan, the Netherlands, Cuba, Italy, Korea, Nicaragua and the USA. All pitchers were analysed while throwing the fastball pitch. Twenty-one kinematic parameters were measured at lead foot contact, during the arm cocking and arm acceleration phases, and at the instant of ball release. These parameters included stride length, foot angle and foot placement; shoulder abduction, shoulder horizontal adduction and shoulder external rotation; knee and elbow flexion; upper torso, shoulder internal rotation and elbow extension angular velocities; forward and lateral trunk tilt; and ball speed. A one-way analysis of variance (P ? 0.01) was used to assess kinematic differences. Shoulder horizontal adduction and shoulder external rotation at lead foot contact and ball speed at the instant of ball release were significantly different among countries. The greater shoulder horizontal abduction observed in Cuban pitchers at lead foot contact is thought to be an important factor in the generation of force throughout the arm cocking and arm acceleration phases, and may in part explain why Cuban pitchers generated the greatest ball release speed. We conclude that pitching kinematics are similar among baseball pitchers from different countries.  相似文献   

7.
By manipulating stimulus variation in terms of opponent pitcher actions, this study investigated the capability of expert (n = 30) and near-expert (n = 95) professional baseball batters to adapt anticipation skill when using the video simulation temporal occlusion paradigm. Participants watched in-game footage of two pitchers, one after the other, that was temporally occluded at ball release and various points during ball flight. They were required to make a written prediction of pitch types and locations. Per cent accuracy was calculated for pitch type, for pitch location, and for type and location combined. Results indicated that experts and near-experts could adapt their anticipation to predict above guessing level across both pitchers, but adaptation to the left-handed pitcher was poorer than the right-handed pitcher. Small-to-moderate effect sizes were found in terms of superior adaptation by experts over near-experts at the ball release and early ball flight occlusion conditions. The findings of this study extend theoretical and applied knowledge of expertise in striking sports. Practical application of the instruments and findings are discussed in terms of applied researchers, practitioners and high-performance staff in professional sporting organisations.  相似文献   

8.
Kinematic comparisons of 1996 Olympic baseball pitchers   总被引:1,自引:0,他引:1  
The aim of this study was to compare and evaluate the kinematics of baseball pitchers who participated in the 1996 XXVI Centennial Olympic Games. Two synchronized video cameras operating at 120 Hz were used to video 48 pitchers from Australia, Japan, the Netherlands, Cuba, Italy, Korea, Nicaragua and the USA. All pitchers were analysed while throwing the fastball pitch. Twenty-one kinematic parameters were measured at lead foot contact, during the arm cocking and arm acceleration phases, and at the instant of ball release. These parameters included stride length, foot angle and foot placement; shoulder abduction, shoulder horizontal adduction and shoulder external rotation; knee and elbow flexion; upper torso, shoulder internal rotation and elbow extension angular velocities; forward and lateral trunk tilt; and ball speed. A one-way analysis of variance (P < 0.01) was used to assess kinematic differences. Shoulder horizontal adduction and shoulder external rotation at lead foot contact and ball speed at the instant of ball release were significantly different among countries. The greater shoulder horizontal abduction observed in Cuban pitchers at lead foot contact is thought to be an important factor in the generation of force throughout the arm cocking and arm acceleration phases, and may in part explain why Cuban pitchers generated the greatest ball release speed. We conclude that pitching kinematics are similar among baseball pitchers from different countries.  相似文献   

9.
The purpose of this study was to quantify trunk axial rotation and angular acceleration in pitching and batting of elite baseball players. Healthy professional baseball pitchers (n = 40) and batters (n = 40) were studied. Reflective markers attached to each athlete were tracked at 240 Hz with an eight-camera automated digitizing system. Trunk axial rotation was computed as the angle between the pelvis and the upper trunk in the transverse plane. Trunk angular acceleration was the second derivative of axial rotation. Maximum trunk axial rotation (55 ± 6°) and angular acceleration (11,600 ± 3,100 °/s2) in pitching occurred before ball release, approximately at the instant the front foot landed. Maximum trunk axial rotation (46 ± 9°) and angular acceleration (7,200 ± 2,800 °/s2) in batting occurred in the follow-through after ball contact. Thus, the most demanding instant for the trunk and spine was near front foot contact for pitching and after ball contact for batting.  相似文献   

10.
The aim of this study was to provide an in-depth analysis of the pick-off play in baseball. Ten collegiate left-handed pitchers and nine base-runners participated in this study. The pitchers were videotaped with four cameras to derive three-dimensional data while performing deliveries in the directions of first base and home plate in a laboratory setting. Deliveries were performed from flat ground. Differences between these deliveries were measured through ten selected joint and segment angles. The base-runners completed two distinct procedures in which they viewed video footage of left-handed pitchers and estimated the intended delivery direction. Base-runners were subsequently interviewed to determine the reasoning behind their decisions. The pitchers' data revealed differences between delivery types in nearly all of the selected angles (P < 0.01). The base-runners' data demonstrated that their ability to discriminate delivery types improved when allowed more viewing time per trial (P < 0.01). Additionally, commonalities exist among the base-runners' focal points on the pitcher while making decisions regarding delivery direction and the kinematic differences between deliveries in left-handed pitchers. The practical significance of these results, however, may be more difficult to interpret.  相似文献   

11.
The purposes of this study were to: (a) examine differences within specific kinematic variables and ball velocity associated with developmental component levels of step and trunk action (Roberton & Halverson, 1984), and (b) if the differences in kinematic variables were significantly associated with the differences in component levels, determine potential kinematic constraints associated with skilled throwing acquisition. Results indicated stride length (69.3%) and time from stride foot contact to ball release (39.7%) provided substantial contributions to ball velocity (p < .001). All trunk kinematic measures increased significantly with increasing component levels (p < .001). Results suggest that trunk linear and rotational velocities, degree of trunk tilt, time from stride foot contact to ball release, and ball velocity represented potential control parameters and, therefore, constraints on overarm throwing acquisition.  相似文献   

12.
ABSTRACT

Conceptually, an efficient baseball pitch demonstrates a proximal-to-distal transfer of segmental angular velocity. Such a timing pattern (or kinematic sequence) reduces stress on musculoskeletal structures of the throwing arm and maximises ball velocity. We evaluated the variability of kinematic sequences in 208 baseball pitches. 3D biomechanical pitch analyses were performed on 8–10 fastball pitches from 22 baseball pitchers (5 high school, 11 collegiate and 6 professional). The kinematic sequence patterns – time of peak angular velocity of five body segments: pelvis, trunk, arm, forearm and hand – were measured. None of the pitches analysed demonstrated an entirely proximal-to-distal kinematic sequence. Fourteen different kinematic sequence patterns were demonstrated, with the most prevalent sequence being pelvis → trunk → arm → hand → forearm. Fewer than 10% of the pitchers performed only one kinematic sequence pattern across the sampled pitches. The variability of the kinematic sequence was similar in high-school pitchers and professionals. Previous studies report that deviation from the proximal-to-distal kinematic sequence is associated with increased injury risk. As a method of evaluating the efficient transfer of energy to the hand, the kinematic sequence may provide insight to injury risk in the future. The ideal kinematic sequence and ideal variability of the sequence when throwing have yet to be determined.  相似文献   

13.
The purposes of this study were to: (a) examine differences within specific kinematic variables and ball velocity associated with developmental component levels of step and trunk action (Roberton & Halverson, 1984), and (b) if the differences in kinematic variables were significantly associated with the differences in component levels, determine potential kinematic constraints associated with skilled throwing acquisition. Results indicated stride length (69.3 %) and time from stride foot contact to ball release (39. 7%) provided substantial contributions to ball velocity (p < .001). All trunk kinematic measures increased significantly with increasing component levels (p < .001). Results suggest that trunk linear and rotational velocities, degree of trunk tilt, time from stride foot contact to ball release, and ball velocity represented potential control parameters and, therefore, constraints on overarm throwing acquisition.  相似文献   

14.
The aim of this study was to compare the associations between lower limb biomechanics and ball release speed in 15 high-performance (HP) and 15 amateur fast bowlers. Kinematic and kinetic variables of the lower limbs collected in the laboratory environment with a 3D Vicon motion analysis system were compared between groups, as well as their associations with ball release speed. HP bowlers had a significantly higher run-up velocity at back foot impact but this difference became non-significant at ball release. Front knee kinematics were not statistically different, however effect sizes revealed medium-large differences with the HP group displaying a more extended knee joint at maximum flexion (d = 0.72) and ball release (d = 0.76). Only front hip positive power was significantly higher in the HP group and it was suggested that the probable cause was the HP bowlers having less knee flexion after front foot impact. From a joint power analysis, the extensor muscle groups of the hip and knee were shown to be important in developing ball release speed. This highlights the need for lower limb/core strength programmes to be multifaceted and focus on the muscles associated with both power and stability.  相似文献   

15.
Abstract

The aims of the present study were to examine quantitatively ground reaction forces, kinematics, and muscle activations during the windmill softball pitch, and to determine relationships between knee valgus and muscle activations, ball velocity and muscle activation as well as ball velocity and ground reaction forces. It was hypothesized that there would be an inverse relationship between degree of knee valgus and muscle activation, a direct relationship between ground reaction forces and ball velocity, and non-stride leg muscle activations and ball velocity. Ten female windmill softball pitchers (age 17.6 ± 3.47 years, stature 1.67 ± 0.07 m, weight 67.4 ± 12.2 kg) participated. Dependent variables were ball velocity, surface electromyographic (sEMG), kinematic, and kinetic data while the participant was the independent variable. Stride foot contact reported peak vertical forces of 179% body weight. There were positive relationships between ball velocity and ground reaction force (r = 0.758, n = 10, P = 0.029) as well as ball velocity and non-stride leg gluteus maximus (r = 0.851, n = 10, P = 0.007) and medius (r = 0.760, n = 10, P = 0.029) muscle activity, while there was no notable relationship between knee valgus and muscle activation. As the windmill softball pitcher increased ball velocity, her vertical ground reaction forces also increased. Proper conditioning of the lumbopelvic–hip complex, including the gluteals, is essential for injury prevention. From the data presented, it is evident that bilateral strength and conditioning of the gluteal muscle group is salient in the windmill softball pitch as an attempt to decrease incidence of injury.  相似文献   

16.
Lacrosse requires the coordinated performance of many complex skills. One of these skills is shooting on the opponents’ net using one of three techniques: overhand, sidearm or underhand. The purpose of this study was to (i) determine which technique generated the highest ball velocity and greatest shot accuracy and (ii) identify kinematic and kinetic variables that contribute to a high velocity and high accuracy shot. Twelve elite male lacrosse players participated in this study. Kinematic data were sampled at 250 Hz, while two-dimensional force plates collected ground reaction force data (1000 Hz). Statistical analysis showed significantly greater ball velocity for the sidearm technique than overhand (< 0.001) and underhand (< 0.001) techniques. No statistical difference was found for shot accuracy (P > 0.05). Kinematic and kinetic variables were not significantly correlated to shot accuracy or velocity across all shot types; however, when analysed independently, the lead foot horizontal impulse showed a negative correlation with underhand ball velocity (= 0.042). This study identifies the technique with the highest ball velocity, defines kinematic and kinetic predictors related to ball velocity and provides information to coaches and athletes concerned with improving lacrosse shot performance.  相似文献   

17.
The aims of this study were (i) to determine whether significant three-dimensional (3D) trunk kinematic differences existed between a driver and a five-iron during a golf swing; and (ii) to determine the anthropometric, physiological, and trunk kinematic variables associated with clubhead speed. Trunk range of motion and golf swing kinematic data were collected from 15 low-handicap male golfers (handicap = 2.5 ± 1.9). Data were collected using a 10-camera motion capture system operating at 250 Hz. Data on clubhead speed and ball velocity were collected using a real-time launch monitor. Paired t-tests revealed nine significant (p ≤ 0.0019) between-club differences for golf swing kinematics, namely trunk and lower trunk flexion/extension and lower trunk axial rotation. Multiple regression analyses explained 33.7–66.7% of the variance in clubhead speed for the driver and five-iron, respectively, with both trunk and lower trunk variables showing associations with clubhead speed. Future studies should consider the role of the upper limbs and modifiable features of the golf club in developing clubhead speed for the driver in particular.  相似文献   

18.
The aim of this study was to provide an in-depth analysis of the pick-off play in baseball. Ten collegiate left-handed pitchers and nine base-runners participated in this study. The pitchers were videotaped with four cameras to derive three-dimensional data while performing deliveries in the directions of first base and home plate in a laboratory setting. Deliveries were performed from flat ground. Differences between these deliveries were measured through ten selected joint and segment angles. The base-runners completed two distinct procedures in which they viewed video footage of left-handed pitchers and estimated the intended delivery direction. Base-runners were subsequently interviewed to determine the reasoning behind their decisions. The pitchers' data revealed differences between delivery types in nearly all of the selected angles (P < 0.01). The base-runners' data demonstrated that their ability to discriminate delivery types improved when allowed more viewing time per trial (P < 0.01). Additionally, commonalities exist among the base-runners' focal points on the pitcher while making decisions regarding delivery direction and the kinematic differences between deliveries in left-handed pitchers. The practical significance of these results, however, may be more difficult to interpret.  相似文献   

19.
The purposes of this research were to quantify the kinematics of the lacrosse shot, based on arm dominance and player experience level. Male players (N = 39; 14–30 years; high school [n = 24], collegiate [n = 9], professional [n = 6]), performed overhead shots using dominant and non-dominant sides. Motion was captured using a high-speed, 12-camera optical system and high-speed filming. Body segment rotational velocities and joint angles were determined at key points in the shot cycle from foot contact (0% of shot) to ball release (100% of shot). All players shot with less anterior trunk lean, less transverse shoulder rotation, and slower trunk-shoulder rotational velocities with the non-dominant side than the dominant side (all p < 0.05). Professional players produced crosse angular velocities 21% faster than high school or collegiate players (p < 0.05). Transverse shoulder rotation range of motion on both dominant and non-dominant and trunk rotation sides was highest in the professional players (p < 0.05). These kinematic features enable professional players to produce faster ball speeds than younger players (138 ± 7 km/h vs. 112 ± 15 km/h, respectively; p < 0.05). Less anterior lean or suboptimal rotation sequence could increase proximal shoulder forces that could contribute to injury as in other throwing sports.  相似文献   

20.
Back injury is common in rowers. Asymmetrical lower limb reaction force on the foot stretchers during rowing may compromise trunk biomechanics and lead to back injury. However, such a mechanism remains putative. Therefore, this study examined lower limb reaction force in experienced rowers with and without a history of back injury. Six rowers who suffered from back injury for more than one week in the past year and another 19 rowers who were never injured performed maximal exertion rowing on a fixed-head rowing machine for 30 strokes. Peak force, average and peak loading rate of the lower limb reaction force during the middle 10-stroke were recorded using strain-gauge transducers placed at the foot stretchers. Asymmetries and intra-limb variability were quantified as asymmetry indices and coefficients of variation, respectively. No significant asymmetry was observed in all selected kinetic parameters between the injured and healthy rowers (p = 0.448–0.722, Hedges' g = 0.162–0.310). Subgroup analyses also did not reveal any significant kinetic differences between injured and healthy scullers or sweepers (p = 0.194–0.855, Hedges' g = 0.203–0.518). Rowers with a history of back injury, regardless of the rowing types, did not demonstrate greater lower limb reaction force asymmetry when compared with healthy rowers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号