首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper addresses the problem of designing a state observer for a class of nonlinear discrete-time systems using the dissipativity theory. We show that the dissipative observation methodology, originally proposed by one of the authors for continuous-time nonlinear systems, can be extended to the discrete-time case. For constructing a convergent observer, the methodology is applied to the nonlinear estimation error dynamics, which is decomposed into a discrete-time Linear Time-Invariant (LTI) subsystem in the forward loop, connected to a time-varying static nonlinearity in the feedback loop. In order to assure asymptotic stability of the closed-loop, complementary dissipativity conditions are imposed on each of the subsystems: (i) the static nonlinearity is required to be dissipative with respect to a quadratic supply rate, and (ii) the observer gains are designed such that the LTI system is dissipative with respect to a complementary supply rate. As in the continuous time framework, the proposed method includes as special cases, unifies and generalizes some observer design methods proposed previously in the literature. A great advantage of the Dissipative Observer Design Method proposed here is that it leads to Matrix Inequalities for the design of the observer gains, and these can be usually converted into Linear Matrix Inequalities (LMI’s). The results are illustrated using Chua’s Chaotic system.  相似文献   

2.
This paper deals with the fault tolerant control (FTC) design for a Vertical Takeoff and Landing (VTOL) aircraft subject to external disturbances and actuator faults. The aim is to synthesize a fault tolerant controller ensuring trajectory tracking for the nonlinear uncertain system represented by a Takagi–Sugeno (T–S) model. In order to design the FTC law, a proportional integral observer (PIO) is adopted which estimate both of the faults and the faulty system states. Based on the Lyapunov theory and ?2 optimization, the trajectory tracking performance and the stability of the closed loop system are analyzed. Sufficient conditions are obtained in terms of linear matrix inequalities (LMI). Simulation results show that the proposed controller is robust with respect to uncertainties on the mechanical parameters that characterize the model and secures global convergence.  相似文献   

3.
A sliding mode observer in the presence of sampled output information and its application to robust fault reconstruction is studied. The observer is designed by using the delayed continuous-time representation of the sampled-data system, for which sufficient conditions are given in the form of linear matrix inequalities (LMIs) to guarantee the ultimate boundedness of the error dynamics. Though an ideal sliding motion cannot be achieved in the observer when the outputs are sampled, ultimately bounded solutions can be obtained provided the sampling frequency is fast enough. The bound on the solution is proportional to the sampling interval and the magnitude of the switching gain. The proposed observer design is applied to the problem of fault reconstruction under sampled outputs and system uncertainties. It is shown that actuator or sensor faults can be reconstructed reliably from the output error dynamics. An example of observer design for an inverted pendulum system is used to demonstrate the merit of the proposed methodology compared to existing sliding mode observer design approaches.  相似文献   

4.
This paper considers the output feedback sliding-mode control for an uncertain linear system with unstable zeros. Based on a frequency shaping design, a dynamic-gain observer is used for state estimation of an uncertain system. This paper confirms that (1) state estimation is globally stable in a practical sense, (2) the resultant error can be arbitrarily small with respect to the system uncertainties, and (3) the proposed sliding-mode control can drive the uncertain system state into an arbitrarily small residual set around the origin, such that the size of residual set is controlled by the filter design. Moreover, the proposed control design is inherently robust to measurement noise; the effect of measurement noise can effectively be attenuated without any additional work.  相似文献   

5.
Monitoring problem in population ecology can be formalized as observer design for the population system in question: Supposing that we observe only certain species considered indicators, we want to recover or estimate the whole state process of the population system, where the state vector is usually composed from the biomasses of the single populations. In the present paper, for stably coexisting population systems, a new approach to the design of the corresponding observer system is proposed which, from the knowledge of the observed indicator(s), estimates the state process with exponential convergence. In the usual observer design, an auxiliary matrix, the so-called gain matrix must be found that guarantees the mentioned exponential convergence. The novelty is in that due to the required sign-stability (or qualitative stability) of the interaction pattern, the designed observer system (i.e. the gain matrix) is robust against quantitative changes in the inter- and intra-specific interactions. (Here the interaction pattern is described by a matrix having the signs as entries, indicating the quality of the interactions within and between the considered species.) In other words, under sign-stability conditions, in the observer design the same gain matrix can be used even if, due to environmental changes, the intensities of certain interactions suffer a quantitative change in the meanwhile. The requirement of sign-stability of the interaction pattern can be considered rather natural, since in a stably coexisting population system, it means for example that a predator–prey relation does not change into a prey–predator interaction, and interactions neither appear nor disappear within the system. Our approach to robust observer design is illustrated on model population systems, such as trophic chains of type resource-producer-primary consumer-secondary consumer and Lotka–Volterra system with vertical structure. For the latter system a Lyapunov function is also constructed that guarantees the global asymptotic stability of the positive equilibrium of the considered model.  相似文献   

6.
In this paper, an event-triggered joint adaptive high-gain observer design method is proposed for a class of nonlinear systems that are characterized by an unknown parameter entering the system state equations. The main difficulty in the observer design is that the event-triggered mechanism (ETM) is affected by variable delayed-sampled data and the system’s unknown parameter. To overcome this difficulty, a closed-loop output predictor is incorporated into the design of the event-triggered mechanism to compensate for the sampling and the delay affecting the system outputs. To prevent the Zeno phenomenon, and to guarantee the exponential convergence of the observer, an exponential decay factor is considered in the ETM. The effectiveness of our proposed observer is demonstrated through numerical simulations, experiments and performances comparison with previous works in the literature.  相似文献   

7.
This paper is concerned with the design of dissipative state observers for a family of time-delay nonlinear systems. The Dissipativity method, proposed by one of the authors for delay-free nonlinear systems, is extended here to a class of time-delay nonlinear systems. The design method consists in decomposing the time-delay estimation error dynamics into a time-delay linear subsystem and a time-varying memoryless nonlinearity, connected in a negative feedback loop. By using some storage functionals, both delay-independent and delay-dependent dissipativity criteria are derived in order to guarantee the exponential convergence property of the observer. The exponential stability of the estimation error is then ensured, assuming that the nonlinearity is dissipative with respect to a quadratic supply rate and the linear part is designed, through the observer gains, to be dissipative with respect to a complementary supply rate. The design conditions are formulated in terms of tractable bilinear (BMI’s) or linear matrix inequalities (LMI’s). An interesting advantage is that the proposed dissipative design extends and generalizes under a unified framework several methods available in the literature, since a wide diversity of nonlinearities can be considered. Numerical examples are provided to demonstrate the effectiveness of the theoretical results.  相似文献   

8.
Previously proposed adaptive fuzzy sliding mode control (AFSMC) and adaptive fuzzy sliding mode observer (AFSMO) methods are mixed and extended for the case of affine systems in which the input gain matrix is state-dependent, non-diagonal and non-positive definite. The proposed Extended AFSMCO (E-AFSMCO) method is then applied for position control of a Stewart Manipulator (SM), whose parameters are strongly state-dependent and complex and not suitable for practical control purposes. A robust observer-based control method which can work with a simplified model of the plant, and at the same time can preserve the stability and performance of the overall complex system is of great need. In this study, the SM dynamic model is simplified by removing the dynamic effects of the legs and the neglected terms are considered as un-modeled dynamics, for which the upper bound of the uncertainty is progressively estimated using the proposed adaptation rules. The final controller is comprised of a fuzzy controller in parallel with a robust switching controller. The second Lyapunov theorem is used to prove the closed-loop asymptotic stability. The proposed E-AFSMCO method is verified numerically and experimentally, depicting the effectiveness of the method for real-time industrial applications.  相似文献   

9.
This paper proposes a new sliding mode observer for fault reconstruction, applicable for a class of linear parameter varying (LPV) systems. Observer schemes for actuator and sensor fault reconstruction are presented. For the actuator fault reconstruction scheme, a virtual system comprising the system matrix and a fixed input distribution matrix is used for the design of the observer. The fixed input distribution matrix is instrumental in simplifying the synthesis procedure to create the observer gains to ensure a stable closed-loop reduced order sliding motion. The ‘output error injection signals’ from the observer are used as the basis for reconstructing the fault signals. For the sensor fault observer design, augmenting the LPV system with a filtered version of the faulty measurements allows the sensor fault reconstruction problem to be posed as an actuator fault reconstruction scenario. Simulation tests based on a high-fidelity nonlinear model of a transport aircraft have been used to demonstrate the proposed actuator and sensor FDI schemes. The simulation results show their efficacy.  相似文献   

10.
In this paper, a sensorless speed control for interior permanent magnet synchronous motors (IPMSM) is designed by combining a robust backstepping controller with integral actions and an adaptive interconnected observer. The IPMSM control design generally requires rotor position measurement. Then, to eliminate this sensor, an adaptive interconnected observer is designed to estimate the rotor position and the speed. Moreover, a robust nonlinear control based on the backstepping algorithm is designed where an integral action is introduced in order to improve the robust properties of the controller. The stability of the closed-loop system with the observer–controller scheme is analyzed and sufficient conditions are given to prove the practical stability. Simulation results are shown to illustrate the performance of the proposed scheme under parametric uncertainties and low speed. Furthermore, the proposed integral backstepping control is compared with the classical backstepping controller.  相似文献   

11.
Asymmetric self-excited periodic motions or periodic solutions which are produced by relay feedback systems that have symmetric characteristics are studied in the paper. Two different mechanisms of producing an asymmetric oscillation by a system with symmetric properties are noted and analyzed by the locus of a perturbed relay system (LPRS) method. Bifurcation between the ability to excite symmetric and asymmetric oscillation with variation of system parameters is analyzed. An algorithm of finding asymmetric solutions is proposed.  相似文献   

12.
With respect to relative degree and chattering in sliding mode (SM) control systems, the notion of fractal dynamics is introduced, and a conjecture is formulated that the character of parasitic dynamics of real control systems is fractal. A model of fractal dynamics is proposed. The characteristics of fractal dynamics are studied in the frequency and time domains. It is shown that with fractal parasitic dynamics SM control systems will always feature chattering and non-ideal closed-loop performance. An example of analysis is provided.  相似文献   

13.
This paper studies the adaptive fuzzy fault-tolerant control design problem for a class of stochastic multi-input and multi-output (MIMO) nonlinear systems in pure-feedback form. The nonlinear systems under study contain unknown functions, unmeasured states and actuator faults, which are described by the loss of effectiveness and lock-in-place modes. With the help of fuzzy logic systems identifying uncertain stochastic nonlinear systems, a fuzzy state observer is established for estimating the unmeasured states. Based on the backstepping design technique with the nonlinear tolerant-fault control theory, an adaptive fuzzy output feedback faults-tolerant control approach is developed. It is proved that the proposed fault-tolerant control approach can guarantee that all the signals of the resulting closed-loop system are bounded in probability. Moreover, the observer errors and tracking errors can be regulated to a small neighborhood of the origin by choosing design parameters appropriately. A simulation example is provided to show the effectiveness of the proposed approach.  相似文献   

14.
This paper aims at providing new design approaches for positive observers of discrete-time positive linear systems based on a construction method of linear copositive Lyapunov function for positive systems. First, an efficient positive observer design approach is proposed by using linear programming such that the observer error system is exponentially stable. Furthermore, an interval observer design is proposed for uncertain positive systems. Then, the results are extended to positive time delay systems. In contrast with the previous design approaches, the new design method provides a general observer design with lower computational burden. Finally, three comparison examples are given to show the merit of the new design approach.  相似文献   

15.
A disturbance rejection approach based on disturbance observer is proposed for a class of nonlinear systems subject to mismatched disturbances. The mismatched disturbances are described by exogenous systems and satisfy partially-known information, which enter the system in the different channels with the control input. The disturbance observer is designed to estimate the mismatched disturbances, which can be introduced separately from the controller design. By integrating disturbance observer with back-stepping method, the disturbance observer plus back-stepping (DOPBS) controller can be constructed to reject the mismatched disturbances. And the asymptotically stability for the closed-loop system can be achieved. Finally, simulation examples are given to demonstrate the feasibility and effectiveness of the proposed scheme compared with existing methods.  相似文献   

16.
This paper presents a second order sliding mode observer (SOSMO) design for discrete time uncertain linear multi-output system. The design procedure is effective for both matched and unmatched bounded uncertainties and/or disturbances. A second order sliding function and corresponding sliding manifold for discrete time system are defined similar to the lines of continuous time counterpart. A boundary layer concept is employed to avoid switching across the defined sliding manifold and the sliding trajectory is confined to a boundary layer once it converges to it. The condition for existence of convergent quasi-sliding mode (QSM) is derived. The observer estimation errors satisfying given stability conditions converge to an ultimate finite bound (within the specified boundary layer) with thickness O(T2)O(T2) where T is the sampling period. A relation between sliding mode gain and boundary layer is established for the existence of second order discrete sliding motion. The design strategy is very simple to apply and is demonstrated for three examples with different class of disturbances (matched and unmatched) to show the effectiveness of the design. Simulation results to show the robustness with respect to the measurement noise are given for SOSMO and the performance is compared with pseudo-linear Kalman filter (PLKF).  相似文献   

17.
This paper develops a novel observer design method for multi-motor web-winding system. Firstly, the multi-motor web-winding system is regarded as a synthetic system with several subsystems, where the dynamic model for each subsystem is given. Then, the nonlinear diffeomorphism transformation is introduced to obtain a transformed system with block triangular structure and the interconnections among the subsystems are allowed. Next, a decentralized high-gain observer with sliding mode is designed for the transformed system, based on which the estimation error dynamics can be got. Sufficient condition of asymptotic stability for estimation error dynamics is derived by the Lyapunov stability theory and the observer gain is obtained. After that, the observer for original multi-motor web-winding system is achieved via inverse transformation. Finally, the simulation and analysis are performed in the three-motor web-winding system to verify the effectiveness of the proposed observer.  相似文献   

18.
In this paper, we develop two new model reference adaptive control (MRAC) schemes for a class of nonlinear dynamic systems that is robust with respect to an uncertain state (output) dependent nonlinear perturbations and/or external disturbances with unknown bounds. The design is based on a controller parametrization with an adaptive integral action. Two types of adaptive controllers are considered—the state feedback controller with a plant parameter identifier, and the output feedback controller with a linear observer.  相似文献   

19.
In order to improve the anti-disturbance performance of a bearingless induction motor (BIM) control system, a fractional-order sliding mode control (FOSMC) strategy based on improved load torque observer is proposed on the basis of the sliding mode speed regulation system. Using the information memory and genetic characteristics of the fractional calculus operator, the fractional integral term of the speed error is introduced in the design of the traditional sliding surface, which reduces the influence of disturbance on the speed regulation system. The fractional-order sliding mode control law is derived based on the BIM mathematical model, and the stability of the control law is proved by Lyapunov theorem. An improved observer is constructed based on the BIM state equations, and the real-time observed load torque is introduced into the fractional-order sliding mode controller. To improve the observer's convergence speed, the proportional integral form is used to replace the integral form in the traditional reduced order load observer. And the state error feedback coefficients of the improved load observer are calculated. Both simulation and experimental results verified the effectiveness of the proposed control strategy.  相似文献   

20.
This paper deals with the exponential stabilization of first order ODE-transport PDE coupled at the boundary point. A state feedback boundary control law has been formulated with the help of the backstepping method. The main novelty of this paper is that the stabilization of the coupled system is discussed by Lyapunov theory and the appropriate observer gain is designed by using the linear matrix inequalities (LMIs). An anti-collocated observer design for the corresponding dual system is also presented. The state feedback boundary controller, observer design and the stabilization of the closed-loop system are discussed in detail with illustrative numerical examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号