首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
已知一元二次方程有整数根 ,求方程中参数的值 ,这类问题类型较多 ,解法不一 .本文介绍几种常见方法供参考 .1 求根法当一元二次方程的判别式Δ是完全平方式或完全平方数时 ,可利用因式分解法 ,先求出方程两根 ,再求参数 .例 1 已知关于 x的一元二次方程 a2 x2 - (3a2- 8a) x +2 a2 - 1 3a +1 5 =0有整数根 ,求整数 a的值 .分析 因为Δ =(3a2 - 8a2 ) - 4 a2 (2 a2 - 1 3a+1 5) =(a2 +2 a) 2是完全平方式 ,故可用因式分解法求出方程根 .解 解方程得 x1 =2 - 3a,x2 =1 - 5a.因为方程有整数根 ,所以 x1 或 x2 是整数 .因此 ,a是 3或 5的因…  相似文献   

2.
求一元二次方程的整数根是各类竞赛的常见题.由于这类问题将整数理论和一元二次方程的有关知识有机地结合在一起,解题的技巧和方法较灵活.现举例说明这类问题的解法.一、利用整数的奇偶性例1!若m、n是奇数,求证:方程x2+mx+n=0没有整数根.分析:只要证明x既不可能是奇数,也不可能是偶数就行了.证明:如果x是奇数,由于m、n也是奇数,则x2+mx+n必为奇数,它与x2+mx+n=0矛盾;如果x是偶数,由于m、n是奇数,故x2+mx+n必为奇数,它与x2+mx+n=0矛盾.因此,方程x2+mx+n=0没有整数根.二、利用判别式及辅助未知数的取值范围例2:!已知m是满足不等式1≤m≤50的正…  相似文献   

3.
一元二次方程根的判别式和根与系数的关系是初中数学的重点内容.解含有字母系数的一元二次方程时,常常会因对字母系数考虑不周,或对判别式运用不当而产生错误.例1求证:关于方程mx2-(m+2)x+1=0有实数根.错解:当m≠0时,Δ=[-(m+2)]2-4m=m2+4,∵m2≥0,∴m2+4>0.即原方程有两个不相等的实数根.分析:含有字母系数的方程不一定是一元二次方程,所以二次项系数也可能等于0,即应对二次项系数进行分类讨论.应补充:当m=0时,原方程变为-2x+1=0,此方程只有一个实数根x=12.例2关于x的方程mx2-(2m+1)x+m=0,有两个不相等的实数根,求m的取值范围.错解:根据题…  相似文献   

4.
在中考复习中,注意某些公式、法则的适用范围以及它的限制条件,是很有必要的.在本文中,我们一起探讨数学中考中容易失分的几个问题.希望能引起同学们的重视,避免摔倒在别人多次绊倒的地方.一、忽视根的判别式例1设x1,x2是方程2x2-4mx+2m2+3m-2=0的两个根.当m为何值时,x12+x22有最小值?求出这个最小值.错解:已知方程的两根是x1,x2,∴x1+x2=2m,x1·x2=2m2+3m-22 .∴x12+x22=(x1+x2)2-2x1x2=(2m)2-2×2m2+3m-22=2m2-3m+2=2(m-34)2+78.(1)∴当m=34时,x12+x22有最小值78.分析:∵x1,x2是原方程的两实根,∴Δ=(-4m)2-4×2(2m2+3m-2)≥0.解得:m≤23.…  相似文献   

5.
一元二次方程是初中数学的重要内容之一 ,以一元二次方程知识为背景的问题是历年中考的热门试题 .这里与同学们交流一下如何恰当地构造一元二次方程 ,利用根与系数的关系或判别式解题 .一、解不等式问题例 1 已知一元二次方程 2x2 -2x + 3m-1 =0有两个实数根x1 、x2 ,且它们满足不等式 x1 x2x1 +x2 -4 <1 ,求实数m的取值范围 .解 由题意得 :x1 +x2 =1 ,x1 x2 =3m -12 ,代入上式得3m-121 -4 <1 ,∴m >-53.又由Δ≥ 0可得4-4 × 2 ( 3m -1 ) ≥ 0 ,∴m ≤ 12 .∴m的取值范围是 -53相似文献   

6.
在什么条件下,一元二次方程的根才是整数呢?下面几个定理部分回答了这个问题. 定理1 若首项系数为1的整系数方程x2+px+q=0(p、q为整数)的判别式Δ=p2-4q为一个完全平方数,则方程的根为整数.反之,亦成立. 这个定理可用反证法来证明,这里从略.只强调一点:对首项系数不  相似文献   

7.
一、由方程的定义确定参数例1若(m2-m-2)x2+mx+3=0是关于x的一元二次方程,则m的取值范围是().(A)m≠-1;(B)m≠2;(C)m≠-1且m≠2;(D)一切实数.解:由一元二次方程的定义,得m2-m-2≠0,∴(m-2)(m+1)≠0,∴m≠2且m≠-1.故选(C).二、由方程根的定义确定参数例2方程x2-12x-m=0的一个根是2,那么m的值是.解:由方程根的定义,把x=2代入方程,得22-12×2-m=0,解得m=-20.三、由方程根的情况确定参数例3已知关于x的一元二次方程(1-2k)x2-2k+1√x-1=0有两个不相等的实数根,求k的取值范围.解:∵方程有两个不相等的实数根,∴△=(-2k+1√)2-4(1-2k)×(-1)=-4k…  相似文献   

8.
一元二次方程根的判别式主要用于判断方程根的情况,灵活运用它还可以解决其它问题.一、用于求值例1如果代数式(2m-1)x2+2(m+1)x+4是完全平方式,求m的值.解:∵代数式(2m-1)x2+2(m+1)x+4是完全平方式,∴(2m-1)x2+2(m+1)x+4=0有两个相等的实数根.∴△=〔2(m+1)〕2-4×4(2m-1)=0.解之,得m=1或m=5.二、用于求最值例2已知a、b都是正实数,且a3+b3=2,求a+b的最大值.解:设a+b=k,则b=k-a,将b=k-a代入a3+b3=2,并以a为主元整理,得3ka2-3k2a+k3-2=0.∵a是正实数,则关于a的方程必有实数根,∴△=(-3k2)2-12k(k3-2)≥0,解得0相似文献   

9.
一元二次方程一直是中考的重头戏.近年来,围绕着“重在基础,突出能力,尝试创新”的命题思路,一元二次方程新题型精彩纷呈.一、设计有隐含条件的一元二次方程问题例1已知x1、x2是关于x的方程(m-1)2x2-(2m-5)x+1=0的两个实数根.(1)若P=1x1+1x2,求P的取值范围;(2)问x1、x2能否同时为正数?若能同时为正数,求出相应的取值范围;若不能同时为正数,请说明理由.简解:(1)依题意可得(m-1)2≠0,且△≥0.这样可以解得m≤74,且m≠1.又x1+x2=2m-5(m-1)2,x1x2=1(m-1)2,故P=1x1+1x2=x1+x2x1x2=2m-5.∴m=P+52,从而有P≤-32,且P≠-3.(2)由m≤74,且m≠1知x1+x…  相似文献   

10.
[题目]若关于x的方程2x+1√=x+m有两个不同的实数根,求实数m的取值范围.错解一:将方程两边同时平方,得x2+(2m-2)x+m2-1=0.∵方程有两个不同的实数根,∴△=(2m-2)2-4(m2-1)>0,即m<1.分析:此解法出错的原因是,思路停留在套用公式上,而完全忽视了题目给出的隐含条件.错解二:将方程两边同时平方,得x2+(2m-2)x+m2-1=0.∵2x+1≥0,即x≥-12,设f(x)=x2+(2m-2)x+m2-1,则△>0,f(-12≥0 解得m<1.分析:错解二的思路是正确的,但却忽视了题目给出的另一个隐含条件x+m≥0.所以,本题的正确答案应是:12≤m<1.一般地,在判断形如ax2+bx+c=0,x∈(t1,t2)的二次…  相似文献   

11.
一◆一、概念题1.一元二次方程(m-1)x2-3x-2=0 ,其中二次项为,二次项系数为,一次项为_______,一次项系数为,常数项为.(我们首先要做的事情是确定m-1≠0,即m≠1)2.关于x的方程mx2 - nx - mx + nx2 = p,(m+n≠0)可整理为,则二次项为,一次项为,常数项为.而二次项系数为,一次项系数为.3.AB=0圳A = 0或B = 0.请用语言表达其含义:.4.不解方程,判断下列方程实根的个数①x(x-1)+3=0,②x2 - 22姨x+2=0,③23x2- 6=2x.5.一元二次方程2x2 - 3x + 4 = 0,两个根分x1x2 = .◆二、基础题6.用4种不同的方法解方程(x - 2)2 - 4(x +7.…  相似文献   

12.
一元二次方程的根的判别式和韦达定理(根与系数关系)在解题中有广泛的应用,近年来中考中屡屡以压轴题形式出现,现举例说明·例1(四川省)已知关于x的方程x2-2(m+1)x+m2-2m-3=0,①的两个不相等实数根中有一个根为0,是否存在实数k,使关于x的方程x2-(k-m)x-k-m2+5m-2=0,②的两个实数根x1、x2之差的绝对值为1?若存在,求出k的值;若不存在,请说明理由·解:因为方程①有两个不等实根,所以Δ=|-2(m+1)|2-4(m2-2m-3)=16m+16>0,所以m>-1·又因为方程①有一根为0,所以m2-2m-3=0,即(m-3)(m+1)=0·解得m1=-1,m2=3·又因为m>-1,所以m1=-1应舍去,所以m=3·当…  相似文献   

13.
一、注意关键的字词例1 m为何实数时,方程mx2-2x+3=0有实根误解∵方程mx-2x+3=0有实根,∴△=(-2)2-4·m·3≥0,解得m≤1/3.∵二次项系数m≠0,  相似文献   

14.
一、求根法用分解因式法表示出一元二次方程的两个解,再利用约数的特性及根据题意解决此类问题·例1已知方程a2x2-(4a2-5a)x+3a2-9a+6=0(a为非负整数)至少有一个整数根,那么a=·解:原方程变形,得[ax-(3a-3)][ax-(a-2)]=0,所以ax=3a-3或ax=a-2·因为a为非负整数,所以x1=3aa-3=3-3a,x2=a-a2=1-2a·当x1为整数时a为3的正约数,所以a=1或3;当x2为整数时a为2的正约数,所以a=1或2·所以a=1或2或3·二、判别式法当一元二次方程有整数根时,首先必须确定整系数和判别式必为完全平方数,然后进一步验证·例2设m为自然数,且1相似文献   

15.
下题是我们在学习一元二次方程的根的判别式时所常见的: 如果m为有理数,试确定k值,使方程x~2-2mx+10x+4k=0的根是有理数。拿到题目后,有的同学可能会这样解吧! 解原方程即x~2+(10-2m)x+4k=0,要使它的根是有理数,只需其根的判别式△=(10-2m)~2-16k=100-40m+4m~2-16k=4(m~2-10m+25-4k) ①是完全平方式,即m~2-10m+25-4k=0有相等的根,即以m为元的此二次方程的判别式△′=100-4(25-4k)=0,  相似文献   

16.
一元二次方程是中学数学的主要内容,在初中代数中占有很重要的地位.同学们在学习这部分知识时,需要注意以下三个问题.一、一元二次方程成立的条件一元二次方程的一般形式是ax2 bx c=0(a≠0),其中a≠0是一元二次方程成立的必要条件.例1关于x的方程m2x2 (2m 1)x 1=0有两个不相等的实数根,求m的取值范围.错解:由题意得Δ=(2m 1)2-4m2=4m 1>0,解得m>-14.分析:解题时忽视了m2≠0这个条件,导致错解.解:因为原方程有两个不相等的实数根,所以原方程满足m2≠0且Δ=(2m 1)2-4m2=4m 1>0,解得m>-14且m≠0.[练习]m为何值时,关于x的方程m x2-3m x m 5=0有…  相似文献   

17.
在中考数学试卷中和中考数学复资料中,常常碰到一元二次方程公共的问题.在求这类问题时,一般的方是应用方程的根的定义,并借助方程的相关知识加以解决.现向同学们绍一种巧求的方法.例1 方程x2+mx+6=0与x2-(m+4)-12=0有一个公共根,求这个公共根m的值.解:设这个公共根为α,则α2+mα+6=0 (1)α2-(m+4)α-12=0 (2 ) (1) + (2) 得:2α2- 4α-6 = 0,即α2-2α-3=0,∴α1= -1,α2=3.当α=-1时,m = 7,当α= 3时,m =-5. ∴方程x2+mx+6=0与x2-(m+4)-12=0 . 当m = 7时,公共根是-1;当 =-5时,公共…  相似文献   

18.
一元二次方程的根的判别式是重要的基础知识,在初中数学中应用极为广泛,它不仅是判别一元二次方程根的情况的依据,而且求代数式值、解方程(组)、求证等式等方面也有着重要的作用,若能熟练掌握它的各种用法,可提高同学们解题能力和知识的综合应用能力。一、判定方程根的情况例1已知方程x2-2x-m=0没有实数根,其中m是实数,试判定方程x2 2mx m(m 1)=0有无实根。解:∵方程x2-2x-m=0无实数根∴△1=(-2)2-4×(-m)=4 4m<0即m<-1又∵△2=(2m)2-4m(m 1)=-4m>0∴方程x2 2mx m(m 1)=0有两个不相等的实根。二、确定方程中系数的值或范围例2若方程x2 2(1-a…  相似文献   

19.
一元二次方程根与系数的关系是初中数学的重要内容之一,也是中考数学中经常考到的一个知识点.有关一元二次方程根与系数的关系的题目有很多类型,现举例说明,供大家参考. 一、讨论已知方程的根的性质、求根或根的代数式的值1.讨论方程根的性质例1 当a取什么值时,关于未知数x的方程ax2+4x-1=0只有正实数根?(2002年广东省广州市中考试题)解:(1)当a=0时,方程为4x-1=0,解得x=14.①(2)当a≠0时,Δ=42-4a(-1)=16+4a,令16+4a≥0,得a≥-4.∴当a≥-4且a≠0时,方程有两个实数根.②设方程的两个实数根为x1、x2,由根与系数的关系,得x1x2=-1a,x1+…  相似文献   

20.
李恩义 《甘肃教育》2014,(12):92-92
正在学习一元二次方程、二次函数以及二次不等式时,一元二次方程ax2+bx+c=0(a≠0)根的判别式△=b2-4ac,无时不在,无处不有.正确理解"△"的真实含义,熟练掌握其用法,不仅对解决相关问题有所帮助,而且对学生进一步弄清这几部分知识间的相互关系十分必要.一、应用求根公式时,不能忽视"△"例1解关于x的一元二次方程(m-1)x2+2mx+(m+3)=0这类问题最容易出错的是不讨论"△"的情况,就用公式法解.其正确的解法为:解:△=(2m)2-4(m-1)(m+3)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号