首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intent of this project was to explore the feasibility of personalising the paddle blade size for individual flatwater kayakers based on their power output profiles. Twelve elite male kayakers performed on a kayak ergometer at the same intensity and resistance that they would normally experience while paddling at race pace for 500 m on the water. The kayak ergometer was instrumented so that power profiles could be determined from the instantaneous force and velocity of the representative centre point of the paddle blade. From the power profile information, the researchers calculated a personalised blade size that was expected to improve performance for those kayakers differing more than 5% from the calculated ‘ideal’ size. For the elite kayakers studied, it was recommended that seven of the paddlers should increase their blade size by approximately 5–10%. For the remaining five paddlers, the results indicated that their current blade sizes were within the expected measurement error of their predicted ideal value and should be retained. It is anticipated that this research will provide the theoretical rationale for elite kayakers to see the need to personalise their blade size based on their own muscle power profiles.  相似文献   

2.
Kinematic analysis is done by measurement of the position of bodies, followed by differentiation to get the accelerations of the centres of mass, and it is widely used in sport research. Another common approach is to measure the forces directly. Our intention here is to perform both a kinematic and a kinetic analysis of the same athlete-equipment system, in this case an athlete on a sliding kayak ergometer, with the aim of exploring the errors that may occur with each measurement type. The kayak ergometer with a sliding trolley, instrumented by seven uniaxial force sensors and two goniometers, was placed in a filming area. The instrumentation was validated in the direction of the anteroposterior axis using Newton’s second law. Ten athletes paddled at 92 strokes per minute, following a stationary phase. The comparison between the net force and the time-derivative of the linear momentum indicated a friction level of about 20 N between the trolley and the frame. Other errors came mainly from the inertial parameters of the trunk. A first analysis of contact forces shows a large inter-subject variability, in particular for the forces applied to the footrest and the seat.  相似文献   

3.
To evaluate the propulsive forces in front crawl arm swimming, derived from a three-dimensional kinematic analysis, these values were compared with mean drag forces. The propulsive forces during front crawl swimming using the arms only were calculated using three-dimensional kinematic analysis combined with lift and drag coefficients obtained in fluid laboratories. Since, for any constant swimming speed, the mean propulsive force should be equal to the mean drag force acting on the body of the swimmer, mean values of the calculated propulsive forces were compared with the mean drag forces obtained from measurements on a Measuring Active Drag (MAD) system. The two methods yielded comparable results, the mean difference between them being only 5% (2 N). We conclude that propulsive forces obtained from three-dimensional kinematic analysis provide realistic values. The calculation of the propulsive force appears to be rather sensitive to the point on the hand at which the velocity is estimated and less sensitive to the orientation of the hand.  相似文献   

4.
During kayak paddling, athletes attempt to maximize kayak velocity with the generation of optimal paddle forces. The aim of the current study was to examine ten elite kayakers and identify a number of key biomechanical performance variables during maximal paddling on a custom kayak simulator. These included analysing the effect of side (left and right) and period (beginning, middle, and end of the kayak simulation) on paddle force, paddle angle, mechanical efficiency, and stroke timing data. Paddle kinetics and kinematics were measured with strain gauge force transducers attached to either end of the ergometer paddle and using a 3D motion analysis system respectively. Results indicated a significantly greater mechanical efficiency during the right paddle stroke compared with the left (P < 0.025). In addition, analysing the effect of period, peak paddle force demonstrated a significant reduction when comparing the beginning to the middle and end of the simulated race respectively (P < 0.025). Examination of individual force profiles revealed considerable individuality, with significant variation in the time course of force application. Analysis of the profiles presented may provide meaningful feedback for kayakers and their coaches.  相似文献   

5.
The cause and effect relationship between the paddling motion and the hull behavior of a kayak in a sprint race has not been sufficiently investigated. The objective of this study was to investigate the effect of the paddling motion on the hull behavior by numerical simulation. A dynamic simulation model of a paddler, paddle and hull in a single kayak, which was previously developed, was used for the simulation. One standard paddling motion and three modified motions were prepared for the simulation. Three modified motions were created based on suggestions by coaches of the Japan Olympic team. These motions were thought to be often seen in paddlers of lower skill level and, therefore, empirically considered to be typically bad motions. From the simulation results, the following findings were obtained: in the simulation of the standard paddling motion, the averaged hull velocity was 5.4 m/s. This was consistent with the actual hull velocity of 5.5 m/s. Typically bad motions which induced undesirable hull fluctuations reduced the propulsive efficiency.  相似文献   

6.
A 12 week kayak training programme was evaluated in children who either had or did not have the anthropometric characteristics identified as being unique to senior elite sprint kayakers. Altogether, 234 male and female school children were screened to select 10 children with and 10 children without the identified key anthropometric characteristics. Before and after training, the children completed an all-out 2min kayak ergometer simulation test; measures of oxygen consumption, plasma lactate and total work accomplished were recorded. In addition, a 500m time trial was performed at weeks 3 and 12. The coaches were unaware which 20 children possessed those anthropometric characteristics deemed to favour development of kayak ability. All children improved in both the 2min ergometer simulation test and 500m time trial. However, boys who were selected according to favourable anthropometric characteristics showed greater improvement than those without such characteristics in the 2 min ergometer test only. In summary, in a small group of children selected according to anthropometric data unique to elite adult kayakers, 12 weeks of intensive kayak training did not influence the rate of improvement of on-water sprint kayak performance.  相似文献   

7.
The aim of this study was to assess the effect of the hand’s acceleration on the propulsive forces and the relative contribution of the drag and lift on their resultant force in the separate phases of the front crawl underwater arm stroke. Ten female swimmers swam one trial of all-out 25-m front crawl. The underwater motion of each swimmer’s right hand was recorded using four camcorders and four periscope systems. Anatomical landmarks were digitised, and the propulsive forces generated by the swimmer’s hand were estimated from the kinematic data in conjunction with hydrodynamic coefficients. When the hand’s acceleration was taken into account, the magnitude of the propulsive forces was greater, with the exception of the mean drag force during the final part of the underwater arm stroke. The mean drag force was greater than the mean lift force in the middle part, while the mean lift force was greater than the mean drag force in the final part of the underwater arm stroke. Thus, swimmers should accelerate their hands from the beginning of their backward motion, press the water with large pitch angles during the middle part and sweep with small pitch angles during the final part of their underwater arm stroke.  相似文献   

8.
Using theoretical principles, the components of drag (friction D F, pressure D PR and wave D W) of a single-seat kayak were analysed. The purpose was to examine the effect of changes in wetted surface area due to changes in kayaker’s weight and the relative contribution of D F, D PR and D W to the total passive drag as function of velocity. The total passive drag values were based on experimental data collected in a single-seat kayak. Three different kayaker simulated weights were tested – 65, 75 and 85 kg. D F was the drag component that contributed the greatest percentage (between 60 and 68% at 5.56 m/s the top velocity tested) to the total passive drag for all the velocities tested and simulated weights. D W was the most affected by the increase in kayaker’s simulated weight, mainly when comparing 65/75 to 85 kg. Results support the importance of a kayak design selection that minimises the kayak’s drag for the individual weight of the kayaker. Also, the results suggest that the path for better hydrodynamic kayak performance should seek changes that can reduce D F, D PR and D W with D F offering the most potential to reduce passive drag.  相似文献   

9.
Fluid forces on kayak paddle blades of different design   总被引:1,自引:1,他引:0  
Three kayak paddle blades of different design (Conventional, Norwegian, Turbo) were tested in a low-speed wind tunnel at a maximum chord Reynolds number of Re = 2.2–2.7 × 105 (corresponding to speed through water of ≈1 m/s). The mean drag force and side force acting on each blade were measured, as the yaw and pitch angles were varied. The results were compared with those recorded for a finite rectangular flat plate of similar area and aspect ratio. For zero pitch angle of the blades, the results indicate that the drag coefficient was mostly independent of the blade design as the yaw angle was varied between ± 20°, with only the Norwegian blade design displaying a marginally higher drag coefficient than either of the other two blades or the flat plate. Increasing the pitch angle to 30°, while maintaining the yaw angle at zero, resulted in a 23% reduction of the drag coefficient for the flat plate, but only a 15% reduction of the drag coefficients for the three blades. For all designs, the drag coefficient reduction followed a simple cosine relationship as the pitch angle or yaw angle was increased. The wind tunnel experiments revealed that the side force coefficients for all three paddle blade designs were entirely independent of the blade design and were indistinguishable from those recorded for a flat plate. In summary, the study showed that the nondimensional force coefficients are largely independent of the paddle blade design.  相似文献   

10.
Abstract

Drag is one of the major factors that influences kayaking performance. To focus on the drag of the kayak’s hull shape and the paddlers’ weight per se, the passive drag (Dp) was measured on a flat-water sprint course for one paddler with added weights. Dp was measured by an electromechanical towing device using a load cell, at incremental and constant velocities from 2.78 to 5.56 m/s. Three kayaks of different sizes and shapes (Nelo® K1 Quattro-M, ML, and L) were used and the paddlers’ body weight was adjusted with weights so the total paddler weight in the kayak was 65, 75, and 85 kg. The mean Dp increased by the power function of D = kvn (mean R2 = .990; SD .006). The Dp went from 21.37?±?1.29 N at 2.78 m/s to 89.32?±?6.43 N at 5.56 m/s. For the two lighter weighted kayaks (65 and 75 kg), the lowest Dp was observed with different kayak sizes (M, ML, or L) depending on the target velocity. The manufacturers suggest that paddlers should select a kayak size according to their body weight to minimise drag; however, the results of this study suggest that target velocities, and thus competition distance should also be factored into kayak selection.  相似文献   

11.
In order to measure active drag during front crawl swimming a system has been designed, built and tested. A tube (23 m long) with grips is fixed under the water surface and the swimmer crawls on this. At one end of the tube, a force transducer is attached to the wall of the swimming pool. It measures the momentary effective propulsive forces of the hands. During the measurements the subjects’ legs are fixed together and supported by a buoy. After filtering and digitizing the electrical force signal, the mean propulsive force over one lane at constant speeds (ranging from about 1 to 2 m s‐1) was calculated. The regression equation of the force on the speed turned out to be almost quadratic. At a mean speed of 1.55 m s‐1 the mean force was 66.3 N. The accuracy of this force measured on one subject at different days was 4.1 N. The observed force, which is equal to the mean drag force, fits remarkably well with passive drag force values as well as with values calculated for propulsive forces during actual swimming reported in the literature. The use of the system does not interfere to any large extent with normal front crawl swimming; this conclusion is based on results of observations of film by skilled swim coaches. It was concluded that the system provides a good method of studying active drag and its relation to anthropometric variables and swimming technique.  相似文献   

12.
Measurement of active drag during crawl arm stroke swimming   总被引:2,自引:0,他引:2  
In order to measure active drag during front crawl swimming a system has been designed, built and tested. A tube (23 m long) with grips is fixed under the water surface and the swimmer crawls on this. At one end of the tube, a force transducer is attached to the wall of the swimming pool. It measures the momentary effective propulsive forces of the hands. During the measurements the subjects' legs are fixed together and supported by a buoy. After filtering and digitizing the electrical force signal, the mean propulsive force over one lane at constant speeds (ranging from about 1 to 2 m s-1) was calculated. The regression equation of the force on the speed turned out to be almost quadratic. At a mean speed of 1.55 m s-1 the mean force was 66.3 N. The accuracy of this force measured on one subject at different days was 4.1 N. The observed force, which is equal to the mean drag force, fits remarkably well with passive drag force values as well as with values calculated for propulsive forces during actual swimming reported in the literature. The use of the system does not interfere to any large extent with normal front crawl swimming; this conclusion is based on results of observations of film by skilled swim coaches. It was concluded that the system provides a good method of studying active drag and its relation to anthropometric variables and swimming technique.  相似文献   

13.
The aim of this study was to determine the relationship between force and velocity parameters during a specific multi-articular upper limb movement – namely, hand rim propulsion on a wheelchair ergometer. Seventeen healthy able-bodied females performed nine maximal sprints of 8?s duration with friction torques varying from 0 to 4?N?·?m. The wheelchair ergometer system allows measurement of forces exerted on the wheels and linear velocity of the wheel at 100 Hz. These data were averaged for the duration of each arm cycle. Peak force and the corresponding maximal velocity were determined during three consecutive arm cycles for each sprint condition. Individual force–velocity relationships were established for peak force and velocity using data for the nine sprints. In line with the results of previous studies on leg cycling or arm cranking, the force–velocity relationship was linear in all participants (r?=??0.798 to ?0.983, P?<0.01). The maximal power output (mean 1.28?W?·?kg?1) and the corresponding optimal velocity (1.49?m?·?s?1) and optimal force (52.3?N) calculated from the individual force–velocity regression were comparable with values reported in the literature during 20 or 30?s wheelchair sprints, but lower than those obtained during maximal arm cranking. A positive linear relationship (r?=?0.678, P?<0.01) was found between maximal power and optimal velocity. Our findings suggest that although absolute values of force, velocity and power depend on the type of movement, the force–velocity relationship obtained in multi-articular limb action is similar to that obtained in wheelchair locomotion, cycling and arm cranking.  相似文献   

14.
ABSTRACT

Successful sprinting depends on covering a specific distance in the shortest time possible. Although external forces are key to sprinting, less consideration is given to the duration of force application, which influences the impulse generated. This study explored relationships between sprint performance measures and external kinetic and kinematic performance indicators. Data were collected from the initial acceleration, transition and maximal velocity phases of a sprint. Relationships were analysed between sprint performance measures and kinetic and kinematic variables. A commonality regression analysis was used to explore how independent variables contributed to multiple-regression models for the sprint phases. Propulsive forces play a key role in sprint performance during the initial acceleration (r = 0.95 ± 0.03) and transition phases (r = 0.74 ± 0.19), while braking duration plays an important role during the transition phase (r = ?0.72 ± 0.20). Contact time, vertical force and peak propulsive forces represented key determinants (r = ?0.64 ± 0.31, r = 0.57 ± 0.35 and r = 0.66 ± 0.30, respectively) of maximal velocity phase performance, with peak propulsive force providing the largest unique contribution to the regression model for step velocity. These results clarified the role of force and time variables on sprinting performance.  相似文献   

15.
The purpose of this study was to test the hypothesis that the passive drag acting on a gliding swimmer is reduced if the swimmer adopts an abdominal breathing manoeuvre (expanding the abdominal wall) rather than chest breathing manoeuvre (expanding the rib cage). Eleven male participants participated in this study. A specialised towing machine was used to tow each participant with tension set at various magnitudes and to record time series data of towing velocity. Participants were asked to inhale air by expanding the abdominal wall or the rib cage and to maintain the same body configuration throughout gliding. The steady-state velocity was measured and the coefficient of drag was calculated for each towing trial to compare between the breathing manoeuvres. The results showed that the towing velocity was increased by 0.02 m/s with a towing force of 34.3 N and by 0.06 m/s with a towing force of 98.1 N. The coefficient of drag was reduced by 5% with the abdominal breathing manoeuvre, which was found to be statistically significant (p < 0.05). These results indicate that adopting the abdominal breathing manoeuvre during gliding reduces the passive drag and the hypothesis was supported.  相似文献   

16.
A mathematical model relating power output of rower to stroke rate on an ergometer (the Concept II Indoor Rower TM, Model C) is studied. The model is used to analyse the ergometer performance of a particular rower. It is determined that he can be more efficient (i.e. decrease power output while maintaining fixed velocity) by decreasing stroke rate, but at the expense of increasing force during the drive. It is also shown that he can be more efficient by increasing the drag factor (using higher vent setting) without increasing force. Dependence of power output on rowing style (the shape of the force curve) is also examined. It is shown that variation of force during the drive has little effect on efficiency, but efficiency is reduced by asymmetry of the force curve that favours the legs.  相似文献   

17.
Abstract

Understanding the magnitude of forces and lower body kinematics that occur during a change of direction (COD) task can provide information about the biomechanical demands required to improve performance. To compare the magnitude of force, impulse, lower body kinematics and post-COD stride velocity produced between athletes of different strength levels during a COD task, 12 stronger (8 males, 4 females) and 12 weaker (4 males, 8 females) recreational team sport athletes were recruited. Strength levels were determined by relative peak isometric force of the dominant and non-dominant leg. All athletes performed 10 pre-planned 45° changes of direction (5 left, 5 right) while three-dimensional motion and ground reaction force (GRF) data were collected. Differences in all variables for the dominant leg were examined using a one-way analysis of variance (ANOVA) with a level of significance set at p ≤0.05. The stronger group displayed significantly faster post-COD stride velocity and greater vertical and horizontal braking forces, vertical propulsive force, vertical braking impulse, horizontal propulsive impulse, angle of peak braking force application, hip abduction and knee flexion angle compared to the weaker group. The results suggest that individuals with greater relative lower body strength produced higher magnitude plant foot kinetics and modified lower body positioning while producing faster COD performances. Future investigations should determine if strength training to enable athletes to increase plant foot kinetics while maintaining or adopting a lower body position results in a concomitant increases in post-COD stride velocity.  相似文献   

18.
We aimed to investigate the step-to-step spatiotemporal variables and ground reaction forces during the acceleration phase for characterising intra-individual fastest sprinting within a single session. Step-to-step spatiotemporal variables and ground reaction forces produced by 15 male athletes were measured over a 50-m distance during repeated (three to five) 60-m sprints using a long force platform system. Differences in measured variables between the fastest and slowest trials were examined at each step until the 22nd step using a magnitude-based inferences approach. There were possibly–most likely higher running speed and step frequency (2nd to 22nd steps) and shorter support time (all steps) in the fastest trial than in the slowest trial. Moreover, for the fastest trial there were likely–very likely greater mean propulsive force during the initial four steps and possibly–very likely larger mean net anterior–posterior force until the 17th step. The current results demonstrate that better sprinting performance within a single session is probably achieved by 1) a high step frequency (except the initial step) with short support time at all steps, 2) exerting a greater mean propulsive force during initial acceleration, and 3) producing a greater mean net anterior–posterior force during initial and middle acceleration.  相似文献   

19.
The aim of this study was to build an accurate computer-based model to study the water flow and drag force characteristics around and acting upon the human body while in a submerged streamlined position. Comparisons of total drag force were performed between an actual swimmer, a virtual computational fluid dynamics (CFD) model of the swimmer, and an actual mannequin based on the virtual model. Drag forces were determined for velocities between 1.5 m/s and 2.25 m/s (representative of the velocities demonstrated in elite competition). The drag forces calculated from the virtual model using CFD were found to be within 4% of the experimentally determined values for the mannequin. The mannequin drag was found to be 18% less than the drag of the swimmer at each velocity examined. This study has determined the accuracy of using CFD for the analysis of the hydrodynamics of swimming and has allowed for the improved understanding of the relative contributions of various forms of drag to the total drag force experienced by submerged swimmers.  相似文献   

20.
We present a study of the hydrodynamic characteristics of sea kayak paddles without taking into account the kayaker. We focus on traditional paddles used in the Arctic, one from Greenland and one from the Aleutian Islands. A basic modern European paddle is included in the study for comparison. First the paddle stroke parameters specific to sea kayaking are identified because previous studies were devoted to a competition context. The hydrodynamic force generated by the blade motion is detailed: two terms are identified, one involving the inertia of the water surrounding the blade at the beginning of its motion, and the second term is the classical drag/lift force. Drag and lift force coefficients were measured in a wind tunnel. The data allow computation of the hydrodynamic force during a paddle stroke. The European paddle was shown to be more efficient than the traditional paddles because of its shorter length to width ratio which contributed to a larger inertia effect. However, the force obtained with the traditional paddles better follows the imposed motion by the kayaker so that they are more comfortable and less tiring in the context of long distance trips, as those practiced in sea kayaking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号