首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although it is clear that rowers have a large muscle mass, their distribution of muscle mass and which of the main motions in rowing mediates muscle hypertrophy in each body part are unclear. We examine the relationships between partial motion power in rowing and muscle cross-sectional area of the thigh, lower back, and upper arms. Sixty young rowers (39 males and 21 females) participated in the study. Joint positions and forces were measured by video cameras and rowing ergometer software, respectively. One-dimensional motion analysis was performed to calculate the power of leg drive, trunk swing, and arm pull motions. Muscle cross-sectional areas were measured using magnetic resonance imaging. Multiple regression analyses were carried out to determine the association of different muscle cross-sectional areas with partial motion power. The anterior thigh best explained the power demonstrated by leg drive (r 2 = 0.508), the posterior thigh and lower back combined best explained the power demonstrated by the trunk swing (r 2 = 0.493), and the elbow extensors best explained the power demonstrated by the arm pull (r 2 = 0.195). Other correlations, such as arm muscles with leg drive power (r 2 = 0.424) and anterior thigh with trunk swing power (r 2 = 0.335), were also significant. All muscle cross-sectional areas were associated with rowing performance either through the production of power or by transmitting work. The results imply that rowing motion requires a well-balanced distribution of muscle mass throughout the body.  相似文献   

2.
Rowers need to combine high sprint and endurance capacities. Muscle morphology largely explains muscle power generating capacity, however, little is known on how muscle morphology relates to rowing performance measures. The aim was to determine how muscle morphology of the vastus lateralis relates to rowing ergometer performance, sprint and endurance capacity of Olympic rowers. Eighteen rowers (12♂, 6♀, who competed at 2016 Olympics) performed an incremental rowing test to obtain maximal oxygen consumption, reflecting endurance capacity. Sprint capacity was assessed by Wingate cycling peak power. M. vastus lateralis morphology (volume, physiological cross-sectional area, fascicle length and pennation angle) was derived from 3-dimensional ultrasound imaging. Thirteen rowers (7♂, 6♀) completed a 2000-m rowing ergometer time trial. Muscle volume largely explained variance in 2000-m rowing performance (R2 = 0.85), maximal oxygen consumption (R2 = 0.65), and Wingate peak power (R2 = 0.82). When normalized for differences in body size, maximal oxygen consumption and Wingate peak power were negatively related in males (r = ?0.94). Fascicle length, not physiological cross-sectional area, attributed to normalized peak power. In conclusion, vastus lateralis volume largely explains variance in rowing ergometer performance, sprint and endurance capacity. For a high normalized sprint capacity, athletes may benefit from long fascicles rather than a large physiological cross-sectional area.  相似文献   

3.
Bilateral leg extension power and fat-free mass in young oarsmen   总被引:1,自引:0,他引:1  
We evaluated the impact of bilateral leg extension power and fat-free mass on 2000 m rowing ergometer performance in 332 young oarsmen (age 21+/-2 years, height 1.76+/-0.05 m, body mass 62+/-6 kg; mean+/-s). The 2000 m rowing performance time was correlated with height (1.62-1.93 m; R2=0.23, P<0.001), body mass (53-95 kg; R2=0.53, P<0.001), fat-free mass (47-82 kg; R2=0.58, P<0.001) and bilateral leg extension power (1202-3302 W; R2=0.38, P<0.001). Multiple regression analysis selected fat-free mass and bilateral leg extension power as regressor variables. Fat-free mass explained 58% of the variability in rowing performance and the inclusion of bilateral leg extension power improved the power of prediction by 5%. The results suggest that rowing involves almost every muscle in the body and that bilateral leg extension power is very important during this activity.  相似文献   

4.
The effect of anthropometric differences in shank to thigh length ratio upon timing and magnitude of joint power production during the drive phase of the rowing stroke was investigated in 14 elite male rowers. Rowers were tested on the RowPerfect ergometer which was instrumented at the handle and foot stretcher to measure force generation, and a nine segment inverse dynamics model used to calculate the rower's joint and overall power production. Rowers were divided into two groups according to relative shank thigh ratio. Time to half lumbar power generation was significantly earlier in shorter shank rowers (p = 0.028) compared to longer shank rowers, who showed no lumbar power generation during the same period of the drive phase. Rowers with a relatively shorter shank demonstrated earlier lumbar power generation during the drive phase resulting from restricted rotation of the pelvic segment requiring increased lumbar extension in these rowers. Earlier lumbar power generation and extension did not appear to directly affect performance measures of the short shank group, and so can be attributed to a technical adaptation developed to maximise rowing performance.  相似文献   

5.
In 19 elite schoolboy rowers, the relationships between anthropometric characteristics, metabolic parameters, strength variables and 2000-m rowing ergometer performance time were analysed to test the hypothesis that a combination of these variables would predict performance better than either individual variables or one category of variables. Anthropometric characteristics, maximal oxygen uptake (V O 2m ax ), accumulated oxygen deficit, net efficiency, leg strength and 2000-m rowing ergometer time were measured. Body mass, V O 2max and knee extension correlated with 2000-m performance time (r = -0.41, -0.43 and-0.40, respectively; P 0.05), while net efficiency and accumulated oxygen deficit did not. Multiple-regression analyses indicated that the prediction model using anthropometric variables alone best predicts performance (R = 0.82), followed by the equation comprising body mass, V O 2max and skinfolds (R = 0.80). Although the regression equations increased the predictive power from that obtained using single variables, the hypothesis that a prediction model consisting of variables from different physiological categories would predict performance better than variables from one physiological category was not supported.  相似文献   

6.
In 19 elite schoolboy rowers, the relationships between anthropometric characteristics, metabolic parameters, strength variables and 2000-m rowing ergometer performance time were analysed to test the hypothesis that a combination of these variables would predict performance better than either individual variables or one category of variables. Anthropometric characteristics, maximal oxygen uptake (VO2max), accumulated oxygen deficit, net efficiency, leg strength and 2000-m rowing ergometer time were measured. Body mass, VO2max and knee extension correlated with 2000-m performance time (r= -0.41, -0.43 and -0.40, respectively; P< 0.05), while net efficiency and accumulated oxygen deficit did not. Multiple-regression analyses indicated that the prediction model using anthropometric variables alone best predicts performance (R = 0.82), followed by the equation comprising body mass, VO2max and skinfolds (R = 0.80). Although the regression equations increased the predictive power from that obtained using single variables, the hypothesis that a prediction model consisting of variables from different physiological categories would predict performance better than variables from one physiological category was not supported.  相似文献   

7.
The aim of this study was to establish whether asymmetry of the strength of the leg and trunk musculature is more prominent in rowers than in controls. Nineteen oarsmen and 20 male controls matched for age, height and body mass performed a series of isokinetic and isometric strength tests on an isokinetic dynamometer. These strength tests focused on the trunk and leg muscles. Comparisons of strength were made between and within groups for right and left symmetry patterns, hamstring :quadriceps ratios, and trunk flexor and extensor ratios. The results revealed no left and right asymmetries in either the knee extensor or flexor strength parameters (including both isometric and isokinetic measures). Knee extensor strength was significantly greater in the rowing population, but knee flexor strength was similar between the two groups. No difference was seen between the groups for the hamstring:quadriceps strength ratio. In the rowing population, stroke side had no influence on leg strength. No differences were observed in the isometric strength of the trunk flexors and extensors between groups, although EMG activity was significantly higher in the rowing population. Patterns of asymmetry of muscle activity were observed between the left and right erector spinae muscles during extension, which was significantly related to rowing side ( P < 0.01). These observations could be related to the high incidence of low back pain in oarsmen.  相似文献   

8.
Do oarsmen have asymmetries in the strength of their back and leg muscles?   总被引:1,自引:0,他引:1  
The aim of this study was to establish whether asymmetry of the strength of the leg and trunk musculature is more prominent in rowers than in controls. Nineteen oarsmen and 20 male controls matched for age, height and body mass performed a series of isokinetic and isometric strength tests on an isokinetic dynamometer. These strength tests focused on the trunk and leg muscles. Comparisons of strength were made between and within groups for right and left symmetry patterns, hamstring: quadriceps ratios, and trunk flexor and extensor ratios. The results revealed no left and right asymmetries in either the knee extensor or flexor strength parameters (including both isometric and isokinetic measures). Knee extensor strength was significantly greater in the rowing population, but knee flexor strength was similar between the two groups. No difference was seen between the groups for the hamstring: quadriceps strength ratio. In the rowing population, stroke side had no influence on leg strength. No differences were observed in the isometric strength of the trunk flexors and extensors between groups, although EMG activity was significantly higher in the rowing population. Patterns of asymmetry of muscle activity were observed between the left and right erector spinae muscles during extension, which was significantly related to rowing side (P < 0.01). These observations could be related to the high incidence of low back pain in oarsmen.  相似文献   

9.
To determine the contributions of the motions of the body segments to the vertical ground reaction force (Fz), the joint torques produced by the leg muscles, and the time course of vertical velocity generation during a vertical jump, 15 men were videotaped performing countermovement vertical jumps from a force plate with and without an arm swing. Linear kinematic, Fz, and joint torque data were computed and compared using repeated measures analysis of variance. Maximum jump height was significantly larger in the arm swing jumps compared to the no arm swing jumps and was due to both a higher height of the center of mass (CM) at takeoff (54%) and a larger vertical velocity of the CM at takeoff (46%). The net vertical impulse created during the propulsive phase of the arm swing jumps was greater due to a trend of an increased duration (0.021 s) of the propulsive phase and not to larger average values of Fz. In the arm swing jumps, the arm motion resulted in the arms making a larger maximal contribution to Fz during the middle of the propulsive phase and decreased the negative contribution of the trunk-head and thigh to Fz late in the propulsive phase. Last, the arm swing decreased the extensor torques at the hip (13%), knee (10%), and ankle (10%) early in the propulsive phase but augmented these same extensor torques later in the propulsive phase.  相似文献   

10.
We evaluated the impact of bilateral leg extension power and fat-free mass on 2000?m rowing ergometer performance in 332 young oarsmen (age 21±2 years, height 1.76±0.05?m, body mass 62±6?kg; mean±s). The 2000?m rowing performance time was correlated with height (1.62–1.93?m; R 2?=?0.23, P?<0.001), body mass (53–95?kg; R 2?=?0.53, P?<0.001), fat-free mass (47–82?kg; R 2?=?0.58, P?<0.001) and bilateral leg extension power (1202–3302?W; R 2?=?0.38, P?<0.001). Multiple regression analysis selected fat-free mass and bilateral leg extension power as regressor variables. Fat-free mass explained 58% of the variability in rowing performance and the inclusion of bilateral leg extension power improved the power of prediction by 5%. The results suggest that rowing involves almost every muscle in the body and that bilateral leg extension power is very important during this activity.  相似文献   

11.
The aim of this study was to establish the relationship between selected physiological variables of rowers and rowing performance as determined by a 2000 m time-trial on a Concept II Model B rowing ergometer. The participants were 13 male club standard oarsmen. Their mean (+/- s) age, body mass and height were 19.9+/-0.6 years, 73.1+/-6.6 kg and 180.5+/-4.6 cm respectively. The participants were tested on the rowing ergometer to determine their maximal oxygen uptake (VO2max), rowing economy, predicted velocity at VO2max, velocity and VO2 at the lactate threshold, and their velocity and VO2 at a blood lactate concentration of 4 mmol x l(-1). Percent body fat was estimated using the skinfold method. The velocity for the 2000 m performance test and the predicted velocities at the lactate threshold, at a blood lactate concentration of 4 mmol x l(-1) and at VO2max were 4.7+/-0.2, 3.9+/-0.2, 4.2+/-0.2 and 4.6+/-0.2 m x s(-1) respectively. A repeated-measures analysis of variance showed that the three predicted velocities were all significantly different from each other (P<0.05). The VO2max and lean body mass showed the highest correlation with the velocity for the 2000 m time-trial (r = 0.85). A stepwise multiple regression showed that VO2max was the best single predictor of the velocity for the 2000 m time-trial; a model incorporating VO2max explained 72% of the variability in 2000 m rowing performance. Our results suggest that rowers should devote time to the improvement of VO2max and lean body mass.  相似文献   

12.
The aims of this study were to examine the use of the critical velocity test as a means of predicting 2000-m rowing ergometer performance in female collegiate rowers, and to study the relationship of selected physiological variables on performance times. Thirty-five female collegiate rowers (mean ± s: age 19.3 ± 1.3 years; height 1.70 ± 0.06 m; weight 69.5 ± 7.2 kg) volunteered to participate in the study. Rowers were divided into two categories based on rowing experience: varsity (more than 1 year collegiate experience) and novice (less than 1 year collegiate experience). All rowers performed two continuous graded maximal oxygen consumption tests (familiarization and baseline) to establish maximal oxygen uptake (VO(2max)), peak power output, and power output at ventilatory threshold. Rowers then completed a critical velocity test, consisting of four time-trials at various distances (400 m, 600 m, 800 m, and 1000 m) on two separate days, with 15 min rest between trials. Following the critical velocity test, rowers completed a 2000-m time-trial. Absolute VO(2max) was the strongest predictor of 2000-m performance (r = 0.923) in varsity rowers, with significant correlations also observed for peak power output and critical velocity (r = 0.866 and r = 0.856, respectively). In contrast, critical velocity was the strongest predictor of 2000-m performance in novice rowers (r = 0.733), explaining 54% of the variability in performance. These findings suggest the critical velocity test may be more appropriate for evaluating performance in novice rowers.  相似文献   

13.
In rowing, mechanical power output is a key parameter for biophysical analyses and performance monitoring and should therefore be measured accurately. It is common practice to estimate on-water power output as the time average of the dot product of the moment of the handle force relative to the oar pin and the oar angular velocity. In a theoretical analysis we have recently shown that this measure differs from the true power output by an amount that equals the mean of the rower’s mass multiplied by the rower’s center of mass acceleration and the velocity of the boat. In this study we investigated the difference between a rower’s power output calculated using the common proxy and the true power output under different rowing conditions. Nine rowers participated in an on-water experiment consisting of 7 trials in a single scull. Stroke rate, technique and forces applied to the oar were varied. On average, rowers’ power output was underestimated with 12.3% when determined using the common proxy. Variations between rowers and rowing conditions were small (SD = 1.1%) and mostly due to differences in stroke rate. To analyze and monitor rowing performance accurately, a correction of the determination of rowers’ on-water power output is therefore required.  相似文献   

14.
Abstract With the use of three-dimensional whole body scanning technology, this study compared the 'traditional' anthropometric model [one-dimensional (1D) measurements] to a 'new' model [1D, two-dimensional (2D), and three-dimensional (3D) measurements] to determine: (1) which model predicted more of the variance in self-reported best 2000-m ergometry rowing performance; and (2) what were the best anthropometric predictors of ergometry performance, for junior rowers competing at the 2007 and 2008 Australian Rowing Championships. Each rower (257 females, 16.3?±?1.4 years and 243 males, 16.6?±?1.5 years) completed a performance and demographic questionnaire, had their mass, standing and sitting height physically measured and were landmarked and scanned using the Vitus Smart? 3D whole body scanner. Absolute and proportional anthropometric measurements were extracted from the scan files. Partial least squares regression analysis, with anthropometric measurements and age as predictor variables and self-reported best 2000-m ergometer time as the response variable, was used to first compare the two models and then to determine the best performance predictors. The variance explained by each model was similar for both male [76.1% (new) vs. 73.5% (traditional)] and female [72.3% (new) vs. 68.6% (traditional)] rowers. Overall, absolute rather than proportional measurements, and 2D and 3D rather than 1D measurements, were the best predictors of rowing ergometry performance, with whole body volume and surface area, standing height, mass and leg length the strongest individual predictors.  相似文献   

15.
16.
The general aim of this study was to examine the relations between rigging set up, anthropometry, physical capacity, rowing kinematics and rowing performance. Fifteen elite single scullers participated in the experiment. Each sculler's preferred rigging set-up was quantified using measurements that included oar length, inboard, span, gearing ratio, swivel-seat height, footstretcher-seat height and distance, and footstretcher angles. Rowing performance was assessed using 2000 m race times from the Australian National Selection trials. Selected anthropometric, physical capacity and kinematic variables were also quantified. Several rigging variables were significantly correlated with each other, and with various anthropometric, physical capacity and kinematic variables. The individual variables that had the highest correlations with race time were 2 km ergometer time (r=0.90), mass (r=-0.87), height (r=-0.86), oar length (r = -0.85) and strength (r = -0.84). Overall results of this study indicated that the fastest rowers tend to be the largest and strongest, and that these larger body dimensions are reflected in the choice of rigging settings. Rigging set-up by itself should not be considered to be a primary determinant of rowing performance, but rather a consequence of faster rowers being larger and stronger and scaling their rigging set-up accordingly. To maximise rowing performance it appears important to tune the rigging of the boat to match the rower's size and strength.  相似文献   

17.
18.
赖寒 《湖北体育科技》2011,30(1):65-67,71
利用奥地利WEBA Spon公司的Rower Expert Light赛艇实船测试系统对4名女子公开级赛艇运动员进行单人双桨实船划桨测试.分析发现:随着桨频的增加,拉桨与推桨更加迅速,但推桨速度增加得更快.桨频的增加会使得拉桨速度加快但并没有伴随着拉力的显著增加,而拉力的大小对于艇速并不起决定性作用.在相同桨频下,较小...  相似文献   

19.
Detailed time-series of the resultant joint moments and segmental interactions during soccer instep kicking were compared between the preferred and non-preferred kicking leg. The kicking motions of both legs were captured for five highly skilled players using a three-dimensional cinematographic technique at 200 Hz. The resultant joint moment (muscle moment) and moment due to segmental interactions (interaction moment) were computed using a two-link kinetic chain model composed of the thigh and lower leg (including shank and foot). The mechanical functioning of the muscle and interaction moments during kicking were clearly illustrated. Significantly greater ball velocity (32.1 vs. 27.1 m . s(-1)), shank angular velocity (39.4 vs. 31.8 rad . s(-1)) and final foot velocity (22.7 vs. 19.6 m . s(-1)) were observed for the preferred leg. The preferred leg showed a significantly greater knee muscle moment (129.9 N . m) than the non-preferred leg (93.5 N . m), while no substantial differences were found for the interaction moment between the two legs (79.3 vs. 55.7 N . m). These results indicate that the highly skilled soccer players achieved a well-coordinated inter-segmental motion for both the preferred and non-preferred leg. The faster leg swing observed for the preferred leg was most likely the result of the larger muscle moment.  相似文献   

20.
In this study, we examined anabolic and catabolic hormone responses to a single endurance rowing training session in 12 male competitive single scull rowers. A work intensity eliciting a blood lactate concentration of 4 mmol(-1) was determined on a rowing ergometer during an endurance rowing training session lasting about 2 h (7891+/-761 s; distance covered 22.6+/-2.5 km; heart rate 136+/-7 beats x min(-1); intensity 77.4+/-3.8% of anaerobic threshold; mean +/- s). Venous blood samples were obtained before and after on-water rowing. Cortisol, testosterone and sex hormone binding globulin were measured and free testosterone and the free testosterone: cortisol ratio calculated. Blood lactate concentration did not change significantly during training (from 1.7+/-0.4 to 1.9+/-0.4 mmol x l(-1)); however, body mass was reduced (from 82.0+/-10.8 to 80.6+/-11.2 kg) and was related to the distance covered (r = -0.75). The concentrations of cortisol and testosterone did not change significantly during rowing or in the first 2 h of recovery. Free testosterone was reduced in the first 2 h of recovery, but no significant changes were observed in the free testosterone: cortisol ratio. Immediately after rowing, the concentrations of cortisol (r = 0.49) and free testosterone (r = -0.58) were related to the distance covered. Our findings indicate that a prolonged low-intensity training session results in a similar anabolic and catabolic hormone stimulus for trained rowers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号