首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Abstract

The aim of this study was to assess the effects of cold-water immersion (cryotherapy) on indices of muscle damage following a bout of prolonged intermittent exercise. Twenty males (mean age 22.3 years, s = 3.3; height 1.80 m, s = 0.05; body mass 83.7 kg, s = 11.9) completed a 90-min intermittent shuttle run previously shown to result in marked muscle damage and soreness. After exercise, participants were randomly assigned to either 10 min cold-water immersion (mean 10°C, s = 0.5) or a non-immersion control group. Ratings of perceived soreness, changes in muscular function and efflux of intracellular proteins were monitored before exercise, during treatment, and at regular intervals up to 7 days post-exercise. Exercise resulted in severe muscle soreness, temporary muscular dysfunction, and elevated serum markers of muscle damage, all peaking within 48 h after exercise. Cryotherapy administered immediately after exercise reduced muscle soreness at 1, 24, and 48 h (P < 0.05). Decrements in isometric maximal voluntary contraction of the knee flexors were reduced after cryotherapy treatment at 24 (mean 12%, s x  = 4) and 48 h (mean 3%, s x  = 3) compared with the control group (mean 21%, s x  = 5 and mean 14%, s x  = 5 respectively; P < 0.05). Exercise-induced increases in serum myoglobin concentration and creatine kinase activity peaked at 1 and 24 h, respectively (P < 0.05). Cryotherapy had no effect on the creatine kinase response, but reduced myoglobin 1 h after exercise (P < 0.05). The results suggest that cold-water immersion immediately after prolonged intermittent shuttle running reduces some indices of exercise-induced muscle damage.  相似文献   

2.
Abstract

Eleven male judoka, who compete at national level, were recruited with the aim of investigating changes in peak leg power as a result of successive judo bouts and their relationship with lactate production. The participants executed a force–velocity curve to determine peak power in a 90° squat exercise in concentric work. The group then participated in four 5-min judo bouts each separated by 15 min of passive rest. The power developed as a result of the load associated with the maximum peak power reached in the preliminary test was determined, for the same movement, before and after each bout. Finger capillary blood samples were taken after each bout to determine the maximum lactate concentration achieved and lactate clearance. The results showed no effect of successive bouts on peak leg power (P > 0.05) and no difference when comparing the power measured before and after each bout (P > 0.05). Maximum lactate concentration of the fourth bout was lower than that of the first (12.6 ± 3.5 and 14.6 ± 4 mmol · l?1 respectively; P < 0.05), although there was no difference in their clearance dynamics (P > 0.05). On the basis of the results obtained, we conclude that successive judo bouts, with the structure proposed in this study, produce high acidosis levels, which have no effect on the peak power developed in the legs.  相似文献   

3.
Present study examined the effects of conjugated linoleic acid (CLA) supplementation on glycogen resynthesis in exercised human skeletal muscle. Twelve male participants completed a cross-over trial with CLA (3.8 g/day for 8 week) or placebo supplements by separation of 8 weeks. CLA is a mixture of trans-10 cis-12 and cis-9 trans-11 isomers (50:50). On experiment day, all participants performed 60-min cycling exercise at 75% VO2 max, then consumed a carbohydrate meal immediately after exercise and recovered for 3 h. Biopsied muscle samples from vastus lateralis were obtained immediately (0 h) and 3 h following exercise. Simultaneously, blood and gaseous samples were collected for every 30 min during 3-h recovery. Results showed significantly increased muscle glycogen content with CLA after a single bout of exercise (P < 0.05). Muscle glucose transporter type 4 expression was significantly elevated immediately after exercise, and this elevation was continued until 3 h after exercise in CLA trial. However, P-Akt/Akt ratio was not significantly altered, while glucose tolerance was impaired with CLA. Gaseous exchange data showed no beneficial effect of CLA on fat oxidation, instead lower non-esterified fatty acid and glycerol levels were found at 0 h. Our findings conclude that CLA supplementation can enhance the glycogen resynthesis rate in exercised human skeletal muscle.  相似文献   

4.
Abstract

In this study, we examined the effect of 96–125 h of competitive exercise on cognitive and physical performance. Cognitive performance was assessed using the Stroop test (n = 9) before, during, and after the 2003 Southern Traverse adventure race. Strength (MVC) and strength endurance (time to failure at 70% current MVC) of the knee extensor and elbow flexor muscles were assessed before and after racing. Changes in vertical jump (n = 24) and 30-s Wingate performance (n = 27) were assessed in a different group of athletes. Complex response times were affected by the race (16% slower), although not significantly so (P = 0.18), and were dependent on exercise intensity (less so at 50% peak power output after racing). Reduction of strength (P < 0.05) of the legs (17%) and arms (11%) was equivalent (P = 0.17). Reductions in strength endurance were inconsistent (legs 18%, P = 0.09; arms 13%, P = 0.40), but were equivalent between limbs (P = 0.80). Similar reductions were observed in jump height (?8 ± 9%, P < 0.01) and Wingate peak power (?7 ± 15%, P = 0.04), mean power (?7 ± 11%, P < 0.01), and end power (?10 ± 11%, P < 0.01). We concluded that: moderate-intensity exercise may help complex decision making during sustained stress; functional performance was modestly impacted, and the upper and lower limbs were affected similarly despite being used disproportionately.  相似文献   

5.
Abstract

This study was undertaken to examine the acute effect of interferential current on mechanical pain threshold and isometric peak torque after delayed onset muscle soreness induction in human hamstrings. Forty-one physically active healthy male volunteers aged 18?33 years were randomly assigned to one of two experimental groups: interferential current group (n = 21) or placebo group (n = 20). Both groups performed a bout of 100 isokinetic eccentric maximal voluntary contractions (10 sets of 10 repetitions) at an angular velocity of 1.05 rad · s?1 (60° · s?1) to induce muscle soreness. On the next day, volunteers received either an interferential current or a placebo application. Treatment was applied for 30 minutes (4 kHz frequency; 125 μs pulse duration; 80?150 Hz bursts). Mechanical pain threshold and isometric peak torque were measured at four different time intervals: prior to induction of muscle soreness, immediately following muscle soreness induction, on the next day after muscle soreness induction, and immediately after the interferential current and placebo application. Both groups showed a reduction in isometric torque (P < 0.001) and pain threshold (P < 0.001) after the eccentric exercise. After treatment, only the interferential current group showed a significant increase in pain threshold (P = 0.002) with no changes in isometric torque. The results indicate that interferential current was effective in increasing hamstrings mechanical pain threshold after eccentric exercise, with no effect on isometric peak torque after treatment.  相似文献   

6.
Abstract

Throughout adolescence, swimmers begin to carry out demanding endurance and high-intensity training sets, the effect of which on redox status is largely unknown. The aim of the present study was to investigate the effects of 2000-m continuous swimming and 6 × 50-m maximal swimming on the redox status of adolescent swimmers. Fifteen male and 15 female swimmers, aged 14–18 years, provided blood samples before, immediately after, 1 h after, and 24 h after each exercise for the determination of redox status parameters. Oxidative damage was short-lived and manifest as increases in 8-hydroxy-2?-deoxyguanosine (8-OHdG) 1 h after high-intensity exercise (39%, P < 0.001) and in malondialdehyde immediately after both exercises (65%, P < 0.001). Alterations in antioxidant parameters were sustained during recovery: reduced glutathione decreased 24 h post-exercise (11%, P = 0.001), uric acid increased gradually after high-intensity exercise (29%, P < 0.001) and bilirubin peaked 24 h post-exercise (29%, P < 0.001). Males had higher 8-OHdG (49%, P = 0.001) and uric acid (29%, P < 0.001) concentrations than females. However, females showed higher values of malondialdehyde than males immediately post-exercise (30%, P = 0.039), despite lower pre-exercise values. In conclusion, both endurance and high-intensity exercise perturbed the redox balance without inducing prolonged oxidative damage in trained adolescent male and female swimmers. These swimming training trials were not found to be detrimental to the redox homeostasis of adolescents.  相似文献   

7.
Abstract

The purpose of this study was to investigate the acute effect of cigarette smoking on cardiac autonomic function in young adult smokers during dynamic exercise. Fourteen healthy young smokers (21.4 ± 3.4 years) performed peak and submaximal exercise protocols under control and smoking conditions. Resting and submaximal beat-to-beat R-R series were recorded and spectrally decomposed using the fast Fourier transformation. Smoking resulted in a significant decrease in work time, [Vdot]O2peak and peak O2 pulse (P < 0.05). Heart rate increased at rest and during submaximal exercise after smoking (P < 0.05). The raw high frequency and low frequency power were significantly reduced by smoking, both at rest and during exercise (P < 0.05). The low to high frequency ratio was higher after smoking (P < 0.05). The normalised low frequency power was also significantly increased by smoking, but only at rest (P < 0.05). These data demonstrate that the tachycardic effect elicited by smoking is accompanied by acute changes in heart rate spectral components both at rest and during exercise. Therefore, the cardiac autonomic control is altered by smoking not only at rest, but also during exercise, resulting in reduced vagal modulation and increased sympathetic dominance.  相似文献   

8.
Numerous motor abilities depend on the activity of proprioceptors, which has been suggested to be genetically determined. To test this hypothesis, the control of torque generated by knee extensors and knee position was studied in 30 father–son pairs both before and immediately after running. After stabilisation of the participant in a sitting position, the knee joint of his dominant leg was flexed to 90°, and the maximal voluntary torque (MVT) of the dominant knee extensors under static conditions was measured. The participant then tried five times to produce 50% of the MVT. Next, the participant extended the knee to 45° five times without visual control. Significant correlations between the reproducibility of successive trials for groups of fathers and their sons were found. The correlation coefficients for the repeatability of the knee extension torque were 0.69 (confidence interval [CI] = 0.45–0.84; P < 0.01) and 0.75 (CI = 0.54–0.87; P < 0.01) before and after the fatiguing exercise, respectively, whereas the coefficient for the reproducibility of positioning the knee was 0.49 (CI = 0.16–0.72; P < 0.01) after the fatiguing exercise. Our results indicate a significant influence of hereditary factors on the control of limb torque and position.  相似文献   

9.
The purpose of this study was to explore the dose–response relationship between exercise and cognitive performance using an acute bout of isometric exercise. University students (= 55) were randomly assigned to control, 30%, 50% and 70% of maximum voluntary handgrip contraction groups. Participants performed a modified Stroop task before and after completion of an isometric handgrip endurance trial at their assigned exercise intensity. Ratings of perceived exertion (RPE) and forearm muscle activation (EMG) showed linear trends of progressively greater RPE and muscle activation at greater exercise intensity levels. Regression analysis showed significant (P < .05) linear degradations in frequency of errors on the Stroop task with increasing exercise intensity. We conclude that performing isometric exercise until exhaustion is associated with reduced cognitive performance and that higher intensity isometric exercise leads to greater performance impairments in a linear dose–response manner.  相似文献   

10.
Abstract

The purpose of this study was to analyse the effect of regular exercise on spleen and peritoneal exudate reactive oxygen species (ROS) and lymphocyte proliferation by splenocytes. Twenty-four female BALB/c mice were randomly divided into trained (n = 12) and untrained (n = 12) groups. These two groups were further divided into mice that were studied at rest (trained/rest, n = 5; untrained/rest, n = 6) and immediately after a 2 h acute bout of exercise (trained/exercise, n = 6; untrained/exercise, n = 6). The animals were bred in the animal facility of the Yonsei University College of Medicine, where they were housed in a temperature- (22 – 24°C) and humidity- (50 – 60%) controlled environment, with a 12 h photoperiod, and provided with food and water ad libitum. The trained mice underwent 10 weeks of endurance swimming training (5 days per week) in water at 26 – 29°C for 60 min. Changes in body mass, proliferative activity and the production of reactive oxygen species from spleen lymphocytes and peritoneal exudate cells were determined. The splenic lymphocytes of the trained mice had much greater proliferative activity than those of the untrained mice (P < 0.05). Trained mice had lower ROS production in splenic lymphocytes and peritoneal exudate cells than untrained mice. In both groups, there was substantial inhibition of proliferative activity stimulated with medium, concanavalin A and lipopolysaccharide following the acute bout of exercise. This may have been caused by excessive ROS production following the acute exercise session.  相似文献   

11.
The aim of this study was to assess the effect of a unilateral anterior cruciate ligament reconstruction (ACLR) on maximum voluntary contraction (MVC) and explosive strength of both the involved limb and the uninvolved limb. Nineteen male athletes completed a standard isometric testing protocol 4 months post-ACLR, while 16 healthy participants served as a control group (CG). The explosive strength of the knee extensors and flexors was assessed as RFD obtained from the slope of the force–time curves over various time intervals. Both muscle groups of the involved limb had significantly lower MVC compared to the uninvolved. The involved limb also had significantly lower RFD in the late phase of contraction (140–250 ms) for both knee extensors and flexors (P < 0.05). There was no difference in MVC between the uninvolved limb and the CG. However, RFD of the uninvolved limb was lower compared to CG for both knee extensors (0–180 ms; P < 0.01) and flexors (0–150 ms; P < 0.05). ACLR leads to lower MVC and explosive strength of the involved limb. As a consequence of potential crossover (presumably neural-mediated) effects, explosive strength deficits could be bilateral, particularly in the early phase of the contraction (<100 ms).  相似文献   

12.
This study examined the effects of beetroot juice on the repeated bout effect (RBE) to eccentric exercise. Twenty-nine recreationally active males performed two bouts of 100-drop jumps, separated by 14–21 days. Using a double-blind, independent groups design, participants consumed either a higher dose beetroot juice (H-BT; 250 ml, n = 10), a lower dose beetroot juice (L-BT; 125 ml, n = 9) or an isocaloric placebo (PLA; 250 ml, n = 10) for 3 days after bout 1; no drinks were consumed after bout 2. Maximal isometric voluntary contraction (MIVC), countermovement jump (CMJ), pressure-pain threshold (PPT) and creatine kinase (CK) were measured pre, post, 24, 48 and 72 h following both bouts. In bout 2, CMJ and MIVC recovered quicker and CK activity was attenuated (versus bout 1) (P < 0.05) in all groups, demonstrating an RBE. At 24 h post bout 1, MIVC was 84.1 ± 16.1, 83.6 ± 11.6, 79.7 ± 15.1% relative to baseline values in the H-BT, L-BT and PLA groups, respectively; at 24 h post bout 2, MIVC recovered to 90.7 ± 13.7, 92.9 ± 6.9, 87.8 ± 6.9, in the H-BT, L-BT and PLA groups, respectively. These findings suggest that supplementation with antioxidant-rich beetroot juice does not adversely affect acute adaptations to a bout of eccentric exercise.  相似文献   

13.
Abstract

We compared the movement patterns of cricketers in different playing positions across three formats of cricket (Twenty20, One Day, multi-day matches). Cricket Australia Centre of Excellence cricketers (n = 42) from five positions (batting, fast bowling, spin bowling, wicketkeeping, and fielding) had their movement patterns (walk, jog, run, stride, and sprint) quantified by global positioning system (GPS) technology over two seasons. Marked differences in movement patterns were evident between positions and game formats, with fast bowlers undertaking the greatest workload of any position in cricket. Fast bowlers sprinted twice as often, covered over three times the distance sprinting, with much smaller work-to-recovery ratios than other positions. Fast bowlers during multi-day matches covered 22.6 ± 4.0 km (mean ± s) total distance in a day (1.4 ± 0.9 km in sprinting). In comparison, wicketkeepers rarely sprinted, despite still covering a daily total distance of 16.6 ± 2.1 km. Overall, One Day and Twenty20 cricket required ~50 to 100% more sprinting per hour than multi-day matches. However, multi-day cricket's longer duration resulted in 16–130% more sprinting per day. In summary, the shorter formats (Twenty20 and One Day) are more intensive per unit of time, but multi-day cricket has a greater overall physical load.  相似文献   

14.
Abstract

We investigated the effects of an acute bout of exercise on serum soluble leptin receptor (sOB-R) concentrations. Eighteen male participants completed two different exercise sessions with intensities of 25% and 65% maximal aerobic capacity (VO2max). In addition to the energy expenditure during exercise sessions being measured, blood samples were collected before exercise, and immediately, at 24 h, and at 48 h post-exercise to analyse sOB-R, leptin and insulin levels. At 24 h post-exercise, sOB-R and leptin concentrations at the 65% VO2max were significantly different from those at the 25% VO2max. Leptin levels at 48 h post-exercise were also significantly lower for the 65% VO2max than for the 25% VO2max (P < 0.01). In the 65% VO2max session, the energy expenditure during exercise was significantly associated with leptin concentrations at 24 h and 48 h and sOB-R concentrations at 24 h post-exercise. However, no correlations were found between sOB-R and leptin at the three post-exercise time points. In conclusion, an acute bout of exercise with 920 kcal of output resulted in an increase in sOB-R levels at 24 h post-exercise. However, the changes in sOB-R levels due to an acute bout of exercise might not contribute to the delayed decrease observed for leptin.  相似文献   

15.
Abstract

The purpose of this study was to investigate the effect stride length has on ankle biomechanics of the leading leg with reference to the potential risk of injury in cricket fast bowlers. Ankle joint kinematic and kinetic data were collected from 51 male fast bowlers during the stance phase of the final delivery stride. The bowling cohort comprised national under-19, first class and international-level athletes. Bowlers were placed into either Short, Average or Long groups based on final stride length, allowing statistical differences to be measured. A multivariate analysis of variance with a Bonferroni post-hoc correction (α = 0.05) revealed significant differences between peak plantarflexion angles (Short-Long P = 0.005, Average and Long P = 0.04) and negative joint work (Average-Long P = 0.026). This study highlighted that during fast bowling the ankle joint of the leading leg experiences high forces under wide ranges of movement. As stride length increases, greater amounts of negative work and plantarflexion are experienced. These increases place greater loads on the ankle joint and move the foot into positions that make it more susceptible to injuries such as posterior impingement syndrome.  相似文献   

16.
Abstract

This study examined salivary cortisol and testosterone responses to two, different high-intensity, ~30-min cycles separated by 2 h rest before and after an 11-day intensified training period. Twelve recreationally active, healthy males completed the study. Saliva samples were collected before, immediately after and 30 min after both bouts with salivary cortisol and testosterone concentrations assessed. Compared with pre-training blunted exercise-induced salivary cortisol, testosterone and cortisol/testosterone responses to both bouts post-training were observed (P < 0.05 for all). Comparing pre- with post-training the absolute exercise-induced salivary cortisol, testosterone and cortisol/testosterone decreased from 11.1 to 3.1 and 7.0 to 4.4 nmol · L?1 (cortisol), from 407 to 258 and from 473 to 274 pmol · L?1 (testosterone) and from 12 to 4 and 7 to 5 (cortisol/testosterone) for the first and second bouts, respectively (P < 0.05). No differences in the pre- and post-training rating of perceived exertion (RPE) and heart rate (HR) responses during the cycles or times to fatigue were found (P > 0.05). Fatigue and Burnout scores were higher post- compared with pre-training (P < 0.05).

These high-intensity exercise bouts can detect altered hormonal responses following intensified training. This test could assess an athlete's current hormonal status, reductions in salivary cortisol and testosterone responses suggestive of increased fatigue.  相似文献   

17.
The aim of this study was to examine neuromuscular variables contributing to differences in force loss after participants were exposed to the same relative bout of eccentric exercise. Thirty-six males performed 50 maximal eccentric contractions of the elbow flexors and were stratified into high responders (n?=?10) and low responders (n?=?10) based on force loss 36 h after exercise. Maximal voluntary isometric contractions (MVCs) and electromyography (EMG) were measured at baseline and 36 h after exercise. During eccentric exercise, mean peak torque, mean end-range torque from the final 25% of each trial and total angular impulse were computed over 25 contractions in each of two bouts. The slope of the change in these values for each 25 eccentric contractions was calculated for each participant using linear regression. At baseline, MVC was not different between groups (low responders: 97.0?±?9.6 N?·?m; high responders: 82.7?±?6.4 N?·?m; P?=?0.08). High responders demonstrated a 68% (range 62-78%) reduction in MVC and low responders a 39% (29-48%) reduction after exercise. Peak torque, end-range torque and total angular impulse were 13%, 40% and 33% higher, respectively, in the low than in the high responders (peak torque: P?=?0.0002; end-range torque: P?<?0.0001; total angular impulse: P?<?0.001). The rate of decline in peak torque slope was greater in high than in low responders (P?=?0.044). In conclusion, lower peak torque, end-range torque and total angular impulse during eccentric contractions and a greater peak torque slope may identify high responders to eccentric exercise.  相似文献   

18.
A single bout of eccentric exercise induces a protective adaptation against damage from a repeated bout. The aim of this study was to determine whether this repeated bout effect is due to a change in the length–tension relationship. Twelve individuals performed an initial bout of six sets of 10 eccentric quadriceps contractions and then performed a repeated bout 2 weeks later. Eccentric contractions were performed on an isokinetic dynamometer at 1.04 rad?·?s?1 with a target intensity of 90% of isometric strength at 70° of knee flexion. Isometric strength and pain were recorded before and after both eccentric bouts and on each of the next 3 days. Isometric strength was tested at 30°, 50°, 70°, 90° and 110° of knee flexion. On the days following the initial bout, there was a significant loss of isometric strength at all knee flexion angles except 110° (bout×angle: P?<0.01). On day 2, strength averaged 86% of baseline for 30–90° and 102% of baseline for 110°. Strength loss and pain after the initial bout was contrasted by minimal changes after the repeated bout (pain: P?<0.001; strength: P?<0.01). The repeated bout effect was associated with a rightward shift in the length–tension curve; before the repeated bout, isometric strength was 6.8% lower at 30° and 13.6% higher at 110° compared with values before the initial bout (bout×angle: P?<0.05). Assuming that torque production at 110° occurs on the descending limb of the length–tension curve, the increase in torque at 110° may be explained by a longitudinal addition of sarcomeres. The addition of sarcomeres would limit sarcomere strain for subsequent eccentric contractions and may explain the repeated bout effect observed here.  相似文献   

19.
Abstract

The aim of present study was to examine the relationships between serum and salivary values of free testosterone, dehydroepiandrosterone, and cortisol before and after a session of resistance exercise. Twenty-eight healthy men (mean age 40 years, s = 4) participated in the present study. Serum and salivary samples were collected at rest and after a multiple-sets resistance exercise protocol, of approximately 25 minutes duration. Concentrations of free testosterone, dehydroepiandrosterone, and cortisol were measured using radioimmunoassay kits. No significant correlation was observed between serum free testosterone and salivary testosterone (r = 0.22 to 0.26, P > 0.05). Serum cortisol was significantly correlated with salivary cortisol before (r = 0.52, P = 0.005) and after (r = 0.62, P = 0.001) the exercise protocol. Serum and salivary concentrations of dehydroepiandrosterone were significantly correlated before (r = 0.68, P < 0.001) and after (r = 0.7, P < 0.001) exercise. The results of the present study suggest that even under exercise conditions, the salivary values of cortisol and dehydroepiandrosterone can reflect the behaviour of these hormones in blood. However, further studies are necessary to verify if salivary testosterone reflects the behaviour of serum free testosterone during resistance exercise.  相似文献   

20.
The aim of the study was to evaluate, by an electromyographic (EMG) and mechanomyographic (MMG) combined approach, whether years of specific climbing activity induced neuromuscular changes towards performances related to a functional prevalence of fast resistant or fast fatigable motor units. For this purpose, after the maximum voluntary contraction (MVC) assessment, 11 elite climbers and 10 controls performed an exhaustive handgrip isometric effort at 80% MVC. Force, EMG and MMG signals were recorded from the finger flexor muscles during contraction. Time and frequency domain analysis of EMG and MMG signals was performed. In climbers: (i) MVC was higher (762 ± 34 vs 512 ± 57 N; effect size: 1.64; confidence interval: 0.65–2.63; < 0.05); (ii) endurance time at 80% MVC was 43% longer (34.2 ± 3.7 vs 22.3 ± 1.5 s; effect size: 1.21; confidence interval: 0.28–2.14; < 0.05); (iii) force accuracy and stability were greater during contraction (< 0.05); (iv) EMG and MMG parameters were higher throughout the entire isometric effort (< 0.05). Collectively, force, EMG and MMG combined analysis revealed that several years of specific climbing activity addressed the motor control system to adopt muscle activation strategies based on the functional prevalence of fast resistant motor units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号