首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite many coaching and biomechanical texts describing how the kinematics of the club-head at impact lead to distance and accuracy of the ball flight, there is limited quantitative evidence supporting these assertions. The purpose of this study was to quantify the relationships between club-head kinematics and subsequent early ball flight characteristics during the golf drive. An opto-reflective system operating at 400 Hz was used to capture the swings of 21 male golfers using their own drivers. The 3D displacement data permitted the calculation of club-head kinematics at impact, as well as subsequent early ball flight characteristics. Using regression analyses, club-head kinematics at impact (velocity, orientation, path, and centeredness) were used to explain the variability in five dependent variables of early ball flight characteristics (resultant velocity, launch angle, side angle, back spin, and side spin). The results of the study indicated that club-head kinematics at impact explained a significant proportion of early ball flight characteristics (adjusted r 2 = 0.71–0.82), even when generalized across individual clubs.  相似文献   

2.
This paper seeks to address the implications on putting a golf ball with an off-center mass by analyzing the effect of unbalanced mass of ball on its impact and subsequent rolling. We present the general formulation of a rigid golf ball rolling with slip that is able to transition to rolling friction on an arbitrary surface. Particular attention is given to the effects of the offset center of mass on the golf ball’s path. An experimental setup based on a USGA Stimpmeter is used to calibrate the position of contact point as the ball rolls on the green. The trajectories of the ball due to the mass imbalance were studied by numerically solving the equations of motion during putting. Theoretical predictions show that a mass imbalance has little effect on the launch conditions of the ball. However, on a level green a mass offset center of 0.2 % of the ball’s radius can impact the path of the ball with the consequences of missing the hole in a 5.8 m putt. Changing golf ball trajectories with mass offset center has implications on the development of balls and putting.  相似文献   

3.
The displacement of the golf ball struck by a driving club is affected by several player characteristics and equipment parameters and their interrelationships. Some modelling and simulation studies have shown a relationship between shaft length and clubhead speed, supported by a few experimental studies. The aim of the present study was to examine the relationship between driver length and ball launch conditions in an indoor test facility using a ball launch monitor. Nine males considered to be skilled golfers participated in the study. Four driving clubs of total length 117, 119, 124, and 132 cm were assembled from commercially available components and were used to strike golf shots while initial ball velocity, backspin rate, and launch angles were measured. Statistical analysis identified a significant difference in initial launch speed due to club length, a significant difference between participants, but no difference between the trials for a given golfer. A positive trend was noted between backspin and launch angle for all four clubs, and significant inverse associations between initial launch speed and backspin rate and launch angle. However, the combined launch conditions associated with increasing length were not considered optimal, with uncontrolled swingweight and moment of inertia effects considered to be limiting factors.  相似文献   

4.
Abstract

The displacement of the golf ball struck by a driving club is affected by several player characteristics and equipment parameters and their interrelationships. Some modelling and simulation studies have shown a relationship between shaft length and clubhead speed, supported by a few experimental studies. The aim of the present study was to examine the relationship between driver length and ball launch conditions in an indoor test facility using a ball launch monitor. Nine males considered to be skilled golfers participated in the study. Four driving clubs of total length 117, 119, 124, and 132 cm were assembled from commercially available components and were used to strike golf shots while initial ball velocity, backspin rate, and launch angles were measured. Statistical analysis identified a significant difference in initial launch speed due to club length, a significant difference between participants, but no difference between the trials for a given golfer. A positive trend was noted between backspin and launch angle for all four clubs, and significant inverse associations between initial launch speed and backspin rate and launch angle. However, the combined launch conditions associated with increasing length were not considered optimal, with uncontrolled swingweight and moment of inertia effects considered to be limiting factors.  相似文献   

5.
While the role of the upper torso and pelvis in driving performance is anecdotally appreciated by golf instructors, their actual biomechanical role is unclear. The aims of this study were to describe upper torso and pelvis rotation and velocity during the golf swing and determine their role in ball velocity. One hundred recreational golfers underwent a biomechanical golf swing analysis using their own driver. Upper torso and pelvic rotation and velocity, and torso-pelvic separation and velocity, were measured for each swing. Ball velocity was assessed with a golf launch monitor. Group differences (groups based on ball velocity) and moderate relationships (r > or = 0.50; P < 0.001) were observed between an increase in ball velocity and the following variables: increased torso-pelvic separation at the top of the swing, maximum torso-pelvic separation, maximum upper torso rotation velocity, upper torso rotational velocity at lead arm parallel and last 40 ms before impact, maximum torso-pelvic separation velocity and torso-pelvic separation velocity at both lead arm parallel and at the last 40 ms before impact. Torso-pelvic separation contributes to greater upper torso rotation velocity and torso-pelvic separation velocity during the downswing, ultimately contributing to greater ball velocity. Golf instructors can consider increasing ball velocity by maximizing separation between the upper torso and pelvis at the top of and initiation of the downswing.  相似文献   

6.
The purpose of this study was to determine the optimum release conditions for the free throw in men's basketball. The study used hundreds of thousands of three-dimensional simulations of basketball trajectories. Five release variables were studied: release height, release speed, launch angle, side angle, and back spin. The free throw shooter was assumed to shoot at 70% and to release the ball 2.134 m (7 ft) above the ground. We found that the shooter should place up to 3 Hz of back spin on the ball, should aim the ball towards the back of the ring, and should launch the ball at 52 degrees to the horizontal. We also found that it is desirable to release the ball as high above the ground as possible, as long as this does not adversely affect the player's launch consistency.  相似文献   

7.
Most previous research on golf swing mechanics has focused on the driver club. The aim of this study was to identify the kinematic factors that contribute to greater hitting distance when using the 5 iron club. Three-dimensional marker coordinate data were collected (250 Hz) to calculate joint kinematics at eight key swing events, while a swing analyser measured club swing and ball launch characteristics. Thirty male participants were assigned to one of two groups, based on their ball launch speed (high: 52.9 ± 2.1 m · s(-1); low: 39.9 ± 5.2 m · s(-1)). Statistical analyses were used to identify variables that differed significantly between the two groups. Results showed significant differences were evident between the two groups for club face impact point and a number of joint angles and angular velocities, with greater shoulder flexion and less left shoulder internal rotation in the backswing, greater extension angular velocity in both shoulders at early downswing, greater left shoulder adduction angular velocity at ball contact, greater hip joint movement and X Factor angle during the downswing, and greater left elbow extension early in the downswing appearing to contribute to greater hitting distance with the 5 iron club.  相似文献   

8.
Abstract

The purpose of this study was to determine the optimum release conditions for the free throw in men's basketball. The study used hundreds of thousands of three-dimensional simulations of basketball trajectories. Five release variables were studied: release height, release speed, launch angle, side angle, and back spin. The free throw shooter was assumed to shoot at 70% and to release the ball 2.134 m (7 ft) above the ground. We found that the shooter should place up to 3 Hz of back spin on the ball, should aim the ball towards the back of the ring, and should launch the ball at 52° to the horizontal. We also found that it is desirable to release the ball as high above the ground as possible, as long as this does not adversely affect the player's launch consistency.  相似文献   

9.
A mechanical field-goal kicking machine was used to investigate toppling ball flight in American football place-kicking, eliminating a number of uncontrollable impact variables present with a human kicker. Ball flight trajectories were recorded using a triangulation-based projectile tracking system to account for the football’s 3-dimensional position during flight as well as initial launch conditions. The football flights were described using kinematic equations relating to projectile motion including stagnant air drag and were compared to measured trajectories as well as projectile motion equations that exclude stagnant air drag. Measured football flight range deviations from the non-drag equations of projectile motion corresponded to deficits between 9 and 31%, which is described by a football toppling compound drag coefficient of 0.007 ± 0.003 kg/m. Independent variables including impact location and impact angle orientation resulted in 15 impact conditions. We found that an impact location of 5.5 cm from the bottom of the ball maximized trajectory height and distance. At the 5.5-cm impact location, alterations in impact angle produced minimal change in football trajectory, including launch angle (range = 1.96 deg), launch speed (range = 1.06 m/s), and range (range = 0.94 m).  相似文献   

10.
Previous research has highlighted the positive effect that different warm-up protocols have on golf performance (e.g. Sorbie et al., 2016; Tilley & Macfarlane, 2012) with the design of warm-ups and programmes targeting and improving golf performance through the activation and development of specific muscle groups. This study aimed to examine the acute effects of two warm-up protocols on golf drive performance in comparison to a control condition. Using a randomised counterbalanced design over three testing sessions, twenty-three highly skilled golfers completed the control, dynamic and resistance-band warm-up conditions. Following each condition, a GC2 launch monitor was used to record ball velocity and other launch parameters of ten shots hit with the participants’ own driver. A repeated-measures ANOVA found significant increases in ball velocity (ηp2 = .217) between the control and both the dynamic and resistance-band warm-up conditions but no difference between these latter two, and a reduction in launch angle between control and dynamic conditions. The use of either a dynamic stretching or resistance-band warm-up can have acute benefits on ball velocity but golfers should liaise with a PGA Professional golf coach to effectively integrate this into their golf driving performance.  相似文献   

11.
Since clubface orientation at impact affects ball direction and ball spin, the ability to control clubface orientation is one of the most important skills for golfers. This study presents a new method to describe clubface orientation as a function of the clubshaft motions (i.e., swing plane orientation, clubshaft angle in the swing plane, and clubshaft rolling angle) during a golf swing and investigates the relationships between the clubshaft motions and clubface orientation at impact. The club motion data of driver shots were collected from eight skilled golfers using a three-dimensional motion capture system. The degrees of influence of the clubshaft motions on the clubface orientation were investigated using sensitivity analysis. The sensitivity analysis revealed that the swing plane horizontal angle affected the clubface horizontal angle to an extent of 100%, that the clubshaft angle in the swing plane affected both the clubface vertical and horizontal angles to extents of 74 and 68%, respectively, and that the clubshaft rolling angle affected both the clubface vertical and horizontal angles to extents of -67 and 75%, respectively. Since the method presented here relates clubface orientation to clubshaft motions, it is useful for understanding the clubface control of a golfer.  相似文献   

12.
The purpose of the present study was to analyse the variability in clubhead presentation to the ball and the resulting ball impact location on the club face for a range of golfers of different ability. A total of 285 male and female participants hit multiple shots using one of four proprietary drivers. Self-reported handicap was used to quantify a participant's golfing ability. A bespoke motion capture system and user-written algorithms was used to track the clubhead just before and at impact, measuring clubhead speed, clubhead orientation, and impact location. A Doppler radar was used to measure golf ball speed. Generally, golfers of higher skill (lower handicap) generated increased clubhead speed and increased efficiency (ratio of ball speed to clubhead speed). Non-parametric statistical tests showed that low-handicap golfers exhibit significantly lower variability from shot to shot in clubhead speed, efficiency, impact location, attack angle, club path, and face angle compared with high-handicap golfers.  相似文献   

13.
The aim of this study was to determine how shaft length affects golf driving performance. A range of drivers with lengths between 1.168 m and 1.270 m, representing lengths close to the 1.219 m limit imposed by R&A Rules Limited (2008), were assembled and evaluated. Clubhead and ball launch conditions and drive distance and accuracy were determined for seven category 1 golfers (handicaps 0.21 +/- 2.41) who performed shots on a purpose-built practice hole. As shaft length increased from 1.168 m to 1.270 m, initial ball velocity increased (+ 1.8 m/s, P < 0.01). Ball carry (+ 4.3 m, P = 0.152) also increased, although not significantly so. Furthermore, as shaft length increased, for all club comparisons there was no decrease in accuracy. Ball launch conditions of spin components and launch angle remained unaffected by shaft length. Launch angle increased (0.8 degree, F = 1.074, P = 0.362) as driver shaft length increased. Our results show that clubhead and ball velocity together with ball carry tended to increase with no loss of accuracy.  相似文献   

14.
In the golf instructional literature, the putting stroke is typically given higher priority than green reading and aiming. The main purpose of this study was to assess the importance of the putting stroke for direction consistency in golf putting. Kinematic stroke parameters were recorded from 71 elite golf players (mean handicap = 1.8, s = 4.2) on 1301 putts from about 4 m. Of the different factors deciding stroke direction consistency, face angle was found to be the most important (80%), followed by putter path (17%) and impact point (3%). This suggests that improvements in consistency of putter path and impact point will have very little effect on overall putting direction consistency and should not be prioritized in the training of elite players. In addition, mean stroke direction variability for an elite player (European Tour) was found to be 0.39 degrees, which is good enough to hole about 95% of all 4-m putts. In practice, however, top professionals in tournaments only hole about 17% of 4-m putts. We conclude that the putting stroke of elite golfers has a relatively minor influence on direction consistency.  相似文献   

15.
The purpose of this paper was to examine whether the ball position and wrist action (different types of torque application) could be optimised to increase the horizontal golf club head speed at impact with the ball. A two-dimensional double pendulum model of the golf downswing was used to determine to what extent the wrist action affected the club head speed in a driver, and how this affected the optimum ball position. Three different patterns of wrist actions (negative, positive, and negative-positive torque at the wrist) were investigated; and two criteria (maximum and impact criteria) were used to assess their effectiveness in terms of the maximum horizontal club head speed, and the club head speed as the shaft becomes vertical when viewed ‘face-on’. The simulation results indicated that the horizontal club head speed at impact could be increased by these patterns of wrist actions and the optimum ball position could be determined by the impact criterion. Based on the analysis of the energy flow from the input joints of shoulder and wrist to the arm and club head, the way the wrist action affects the club head speed has been discussed. The sensitivity of the results to small changes in model parameter values and initial conditions was investigated. The results were also examined under different torque patterns.  相似文献   

16.
A 3D predictive golfer model can be a valuable tool for investigating the golf swing and designing new clubs. A forward dynamic model, which includes a four degree of freedom golfer model, a flexible shaft based on Rayleigh beam theory, an impulse-momentum impact model and a spin rate dependent aerodynamic ball model, is presented. The input torques for the golfer model are provided by parameterized joint torque generators that have been designed to mimic muscle torque production. These joint torques are optimized to create swings and launch conditions that maximize carry distance. The flexible shaft model allows for continuous bending in the transverse directions, axial twisting of the club and variable shaft stiffness as a function of the length. The completed four-part model with the default parameters is used to estimate the ball carry of a golf swing using a particular club. This model will be useful for experimenting with club design parameters to predict their effect on the ball trajectory and carry distance.  相似文献   

17.
The use of multi-segment trunk models to investigate the crunch factor in golf may be warranted. The first aim of the study was to investigate the relationship between the trunk and lower trunk for crunch factor-related variables (trunk lateral bending and trunk axial rotation velocity). The second aim was to determine the level of association between crunch factor-related variables with swing (clubhead velocity) and launch (launch angle). Thirty-five high-level amateur male golfers (Mean ± SD: age = 23.8 ± 2.1 years, registered golfing handicap = 5 ± 1.9) without low back pain had kinematic data collected from their golf swing using a 10-camera motion analysis system operating at 500 Hz. Clubhead velocity and launch angle were collected using a validated real-time launch monitor. A positive relationship was found between the trunk and lower trunk for axial rotation velocity (r(35) = .47, < .01). Cross-correlation analysis revealed a strong coupling relationship for the crunch factor (R2 = 0.98) between the trunk and lower trunk. Using generalised linear model analysis, it was evident that faster clubhead velocities and lower launch angles of the golf ball were related to reduced lateral bending of the lower trunk.  相似文献   

18.
The aim of this study was to determine if adults spontaneously exploit the laws of physics to achieve better accuracy when throwing at various distances. Eight adults performed 25 underarm throws at five horizontal circular targets located 4, 5, 6, 7 and 8 m away with a constant 5% relative accuracy requirement. Angle and speed of the ball at release were found to increase with throwing distance, while the coordinates of the release point did not change significantly. These results support the idea that people minimize the variability in impact distance by adapting both the angle and the speed at ball release following a mechanical optimum predicted by the laws of physics. Moreover, variability in distance was found to be less than expected because of independent variations in the angle and speed at ball release. Hence, the control of precision throwing seems to imply compensatory variability, as frequently reported in the control of skilled actions.  相似文献   

19.
The aim of this study was to identify and characterise individual differences in launch conditions measured from the same hole during four rounds of a professional golf tournament. Launch data from the 18th tee at the 2009 Dubai World Championship were used for the analysis. Self-organising maps (SOMs) were chosen to visualise the potentially non-linear relationship among the launch variables. Several distinctly different types of drives were identified on the output map. Drives which carried the furthest were not necessarily associated with the highest rates of ball speed. As indicated by carry distance, the longest drives had backspin rates of roughly 2700 rpm, a launch angle of 11 degrees, a straight or slightly left-to-right curving ball flight (for right-handers), and reached an apex of about 36 m. These values are specific to the 18th hole at the Dubai World Championship and differ from the general launch recommendations found in the literature.  相似文献   

20.
The aim of this study was to determine if adults spontaneously exploit the laws of physics to achieve better accuracy when throwing at various distances. Eight adults performed 25 underarm throws at five horizontal circular targets located 4, 5, 6, 7 and 8 m away with a constant 5% relative accuracy requirement. Angle and speed of the ball at release were found to increase with throwing distance, while the coordinates of the release point did not change significantly. These results support the idea that people minimize the variability in impact distance by adapting both the angle and the speed at ball release following a mechanical optimum predicted by the laws of physics. Moreover, variability in distance was found to be less than expected because of independent variations in the angle and speed at ball release. Hence, the control of precision throwing seems to imply compensatory variability, as frequently reported in the control of skilled actions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号