首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports on research into two teachers' views and practices about assessment at the classroom level. Emphasis was given to practical work and its assessment. Findings suggest it is unhelpful to define practical work as distinct from other activities in the science classroom. Various methods used for assessing activity within the participant teachers' classrooms are described. The participant teachers were found to be primarily concerned about issues of ‘fairness’: task validity, reliability of assessment based on co-operative work and assessment of the affective domain. The place of teacher intuition in assessment is raised and briefly discussed. Directions for the ongoing research are foreshadowed. Specializations: science education, technology education, assessment and curriculum development.  相似文献   

2.
As there is nothing as practical as a good theory, there is a continuing need in the field of science education enquiry to look for theories which help to interpret the findings about students' alternative frameworks and to inform the design of teaching strategies which relate to a research focus on ‘how the student learns’. The developmental model of cognitive functioning based on the SOLO Taxonomy (Biggs & Collis, 1982) as updated in 1991 (Biggs & Collis, 1991; Collis & Biggs, 1991) is being applied in this way. Questionnaire data from two large studies of science learning of Australian students (conducted by ACER and NBEET) are being re-analysed in terms of the current theory. This paper illustrates the theory and describes a plan of further research. Specializations: science education, students' understandings of phenomena in science. Specializations: cognitive development, evaluation, mathematics and science education. Specializations: mathematics education, students' understanding of chance and data concepts.  相似文献   

3.
Concluding comments An an ‘action research’ project, science curriculum development at St Columba's is ongoing as is the total school curriculum development. An outline of the development in science has been presented here to:invite comment from science educators in order to help define future directions in curriculum development; tostimulate further research in the area of curriculum development for a ‘Science for All’, and tostimulate debate about what school science, especially junior secondary science, should be.  相似文献   

4.
The attitude towards science of first year early childhood education students was explored using an instrument developed for the purpose. The instrument comprises four Likert-type scales, biographical items and two open-ended attitude items. The four scales, characterised as ‘confidence’, ‘enjoyment’, ‘usefulness’ and ‘appropriateness of science for young children’, were supported by varimax factor analysis and had reliabilities from 0.83 to 0.88. Use of the combined scales as a general ‘attitude towards science’ scale was supported by principal components analysis; reliability for the combined scale was 0.94. Comments made in response to the open-ended items supported the validity of the scales. For the student group as a whole, mean scores on all scales were slightly to moderately positive, with the highest mean being for the ‘science for young children’ scale. Students who had studied at least one science subject at Year 12 level had significantly higher scores on all scales than students who had not studied science at senior level. Australia.Specializations: early childhood science education, biological aspects of child development, conservation biology of gulls.  相似文献   

5.
One of the requirements of the New Zealand Curriculum Framework (Ministry of Education, 1993a) is that all curricula developed in New Zealand must be gender inclusive. Developers of the recently released science curriculum, and the draft technology curriculum, have responded to this requirement in different ways. In this paper I discuss a theorisation of the term ‘gender inclusive’ within national curriculum development generally, and explore and analyse these different responses within the specific context of the science and technology curriculum developments. Particular emphasis is placed on the historical difference between science education and technology education in New Zealand schools, and on the impact theoretical discourses have on the way in which terms such as ‘gender inclusive curricula’ are conceptualised, and viewed as appropriate, or not, for specific purposes. Specializations: feminist theory, science education, technology education, technology curriculum development.  相似文献   

6.
Unattended science and technology exhibits of both static and operational types have been an integral part of museum displays for many years. More recently interactive exhibits in which observers are encouraged to become part of the system of exhibits have become more common. A study was commenced to explore the impact and potential of low cost, unattended, interactive exhibitsset up singly in a normal school classroom without the distractions of a multiplicity of activities as is common in ‘science museums’. Three small groups of Grade 5/6 primary school children interacted with a ‘Falling Towers’ exhibit and their voluntary activities were recorded on videotape for later analysis. Children appeared to state the results of their activity in ways consistent with their expectations rather than with their most recent experience with the exhibit. The responses of girls, boys and mixed groups are reported. Specializations: primary mathematics and science education, teaching strategies. Specializations: science education, students' understandings of phenomena in science.  相似文献   

7.
Routines are a fundamental aspect of classroom life and much attention in recent years has focused on routines for management. The concept of ‘behaviour settings’ and transitions between them as classroom routines is explained and exemplified. This view of routines provides an explanation for the difficulties faced by relieving teachers and student teachers who enter classrooms at mid year and suggests how new routines for complex science activity may be introduced. Specializations: Science curriculum science teacher education, teacher  相似文献   

8.
Students' conceptions of how objects are seen directly, and in mirrors, were explored in an analysis of their written and drawn responses to common visual phenomena depicted in cartoons with brief text. Students in Grades K-10 (n=214) completed a questionnaire and some were interviewed. Evidence was sought to support an hypothesis for increasingly sophisticated responses related to the concepts of sight, light, reflection and image. The developmental model used in this analysis was the updated SOLO Taxonomy (Biggs & Collis, 1991; Collis & Biggs 1991). It appears from the results that different modes of functioning can interfere to produce factually incorrect recollections of experience particularly in the age group 7 to 13 years approximately. Also, this is associated with the common spurious conception that mirrors have a lateral inversion property. Explanations involving light were extremely rare and its role related to the production of an image ‘in the mirror’ but not to the perception of an image in the eyes. Specializations: science education, students' understandings of phenomena in science. Specializations: cognitive development, evaluation, mathematics and science education. Specializations: mathematics education, students' understanding of chance and data concepts.  相似文献   

9.
10.
The term ‘concept’ is used in different ways within educational literature and has at least two different, although related, referents in relation to science knowledge, namely, public knowledge and private understandings. A taxonomic structure for ‘science concepts’ (public knowledge) has been developed to provide a rationale for the choice of phenomena to be used in the investigation of students’ ‘concepts’ and also to act as a frame of reference for generating insights about the data to be collected. Furthermore, it may be a useful heuristic to predict other science concepts likely to be highly problematic in school teaching situations and thus worthy of detailed research. The taxonomy, called a ‘Scale of Empirical Distance’ (SED), enables science concepts to be mapped according to their degree of closeness to concrete realities. The scale shows a recognition of the empirical basis of science concepts and the role of human senses in the perception of the material world even though “absolute objectivity of observation is not a possible ideal of science” as Harre (1972) has noted. The scale uses two binary variables, namely, ‘visual’ and ‘tactile’, to generate four categories of science concepts ranging on a continuum from concrete to abstract. Some concepts related to ‘matter’ will be classified and discussed. Specializations: science teacher education, primary science curriculum and methods, students’ personal meanings of phenomena.  相似文献   

11.
This paper is based on findings from a three year collaborative action research project on classroom teaching and learning. The research, which involved 33 teachers, over two thousand students from six schools, and the authors, centred on exploring how various features of the classroom context influence teaching and learning processes. We interpret project findings as indicating the importance of balance between cognition and affect for effective teaching and learning. We advance the notion of challenge as a way of conceptualising this balance. Challenge comprises a cognitive/metacognitivedemand component and an affectiveinterest component. Nine major features of a teaching/learning event were found to interact to influence these cognitive and affective components of challenge. Specializations: Collaborative research on science teaching and learning; staff development and school improvement; quality of science education. Specializations: Learning and teaching science; pre-service teacher education. Specializations: teacher development in science education; technology education. Specializations: Science and teachnology curriculum, environmental education, educational disadvantage. Specializations: learning theory, probing of understanding, conceptual change.  相似文献   

12.
This research was carried out over a period of ten months with children in Grades 2 and 3 (aged 7 and 8) who were participating in a sequence of technology activities. Since the introduction into Victorian primary schools ofThe Technology Studies Framework P-10 (Crawford, 1988), more teachers are including technology studies in their classrooms and by so doing may assist children's understanding of science concepts. Children are being exposed to science phenomena related to the technology activities and Technology Studies may be a way of providing children with science experiences. ‘Technology Studies’ in this context refers to children carrying out practical problem solving tasks which can be completed without any particular scientific knowledge. Participation in the technology activities may encourage children to become actively involved, thereby facilitating an exploration of the related science concepts. The project identified the importance of challenge in relation to the children's involvement in the technology activities and the conference paper (available from the first author) discusses particular topics in terms of the balance between cognitive/metacognitive and affective influences (Baird et al., 1990) Specializations: science and technology education, interest and attitudinal change. Specialization: technology in the primary school.  相似文献   

13.
The aim of the Primary and Early Childhood Science and Technology Education Project (PECSTEP) is to improve teaching and learning in science and technology of by increasing the number of early childhood and primary teachers who are effective educators. PECSTEP is based on an interactive model of teaching and systematically links work on gender with the learning and teaching of science and technology. The project involves: a year-long inservice program which includes the development of a science curriculum unit by teachers in their schools; linking of the preservice and inservice programs; and the development of support networks for teachers. Each phase of PECSTEP has been researched by means of surveys, interviews and the use of diaries. Research questions have focussed particularly on changes in: teachers’ and student teachers’ attitudes to teaching science and technology; their perceptions of science and technology; their perceptions of their students’ responses and their understandings of how gender relates to these areas. Specializations: primary science curriculum, science teacher education, sociology of science, technology and education. Specializations: gender and science/science teacher education, feminist theory, curriculum theory. Specializations: Science education research, curriculum development.  相似文献   

14.
This study examines teacher perceptions regarding professional development practices used in a region of the NSW Department of School Education to support the implementation of the K-6 Science and Technology Syllabus. The findings from a survey of 97 teachers indicate that teachers have a preference for ‘traditional’ models of in-service which may not bring about significant changes. Teachers also perceive that change is brought about through the influence of external factors such as in-service and resources which are not directly the responsibillity of individual teachers. This contrasts with the perception that the inability to change is due to internal personal qualities. Specializations; K-6 teacher education in science and technology education, children's learning in science and technology.  相似文献   

15.
A study of primary school children's explanations of a range of phenomena concerning air pressure revealed considerable fluidity in their use of conceptions. A measure of consistency was developed and applied to children's written and oral explanations in a range of contexts. While the results showed a general trend with age toward more abstract, ‘generalizable’ conceptions, the notion of parsimony was found to be problematic on a number of levels. Children do not apply a single conception to a phenomenon, but rather operate with multiple conceptions in their explanations, complicating the whole notion of consistency. Moreover, as they develop and apply more advanced conceptions, children inevitably display temporary reductions in consistency. These findings suggest a rather more complex model of conceptual advance than implied in the literature on ‘conceptual change’. Specializations: children's science explanations, conceptual change, primary science teacher education, physics education.  相似文献   

16.
Existing instruments for assessing student or teacher perceptions of characteristics of actual or preferred classroom psychosocial environment are unsuitable for one of the most important settings in science teaching, namely, the science laboratory class. Consequently, the Science Laboratory Environment Inventory (SLEI), was designed to assess student or teacher perceptions of seven scales:Teacher Supportiveness, Student Cohesiveness, Open-Endedness, Integration, Organization, Rule Clarity andMaterial Environment. An important feature of the design of the study was that the new instrument was field tested simultaneously in six countries: Australia, USA, Canada, England, Nigeria and Israel. This paper is based on a sample of 4643 students in 225 individual laboratory classes, together with the teachers of most of these classes. Preliminary analyses were used to shed light on various important research questions including the differences between Actual and Preferred environments, gender differences in perceptions of Actual and Preferred environment, the relationship between the science laboratory environment and attitude towards science laboratory work, differences between school and university laboratory classes, differences between teachers’ and students’ perceptions of the same laboratory classes, and differences between laboratory classes in different science subjects (Physics, Chemistry, Biology). Specializations: Science education, educational evaluation. Specializations: Curriculum, science education, science laboratory teaching. Specializations: Learning environments, science education, educational evaluation, curriculum.  相似文献   

17.
Conclusion Teaching needs to be studied in context, as a whole. This approach would require the student to spend much time in classrooms and in reflection. The STF is a learning environment which while not replacing actual teaching experience, can support that experience and allow students to maximise the benefit of the time they do have in the classroom. Students can learn about instructional strategies in a classroom context, tapping into an experienced teacher's knowledge and experience. The motivation for creating the STF was not to ‘teach’ the students the ‘correct’ strategies to use in the classroom, but to support them in constructing and testing their own understanding of the instructional strategies in a classroom context. The next phase of the project will be trials of the STF with pre-service primary teaching students. A copy of the prototype will be installed at Newling Primary School so that the teachers there can become familiar with the project and offer comment. After this exposure to the concept, a survey will be conducted to determine the structure and content of an STF which would support in-service training. Specializations science education, senior secondary students' understanding of biological concepts, applications of multimedia.  相似文献   

18.
Kuhn (1989) has argued that at the heart of the ability to reason scientifically is the process of differentiating existing mental models (i.e. theory) from new data. In this regard she has proposed a developmental sequence in which, in the early stages, theory and data are fully integrated and are used interchangeably. Later, when theory and data are compatible, they tend to be moulded together as ‘the way things are’, but when they are incompatible conflict is avoided by the use of strategies which bring the two into line: these strategies often include selective attention to the data. Only at the upper levels of this developmental spectrum are theory and data conscientiously differentiated, with each being used to reflect on the other. This paper analyses the responses made by Year 11 students to problems which required them to evaluate a prediction based on some provided data. The problems were set in two contexts, one scientific and one social, and the predictions to be evaluated combined plausibility/implausibility and validity/invalidity. The response patterns were very similar to those described by Kuhn, and the implications of this for teachers, especially those attempting to use conflict based teaching approaches, are developed. Specializations: science teacher education, scientific problem solving, changing students’ alternative conceptions. Specializations: psychological theories applied to science education.  相似文献   

19.
The widespread public acceptance of many paranormal and pseudoscientific claims should be of some concern to science educators who are striving to produce a scientifically literate community. There is ample evidence to show that students at all levels of our education system believe in aspects of pseudoscience based on claims and assumptions that are in conflict with accumulated scientific knowledge and a rigorous methodology. A survey was designed to assess primary and secondary science teacher-trainees' views. Afterwards 60 students were introduced to the notion of a ‘fair test’ and what constitutes ‘evidence’. Demonstrations of psychic powers were provided and a video shown of professional water-diviners repeatedly failing to locate water under controlled conditions. A re-survey, 3 months later, indicated a rejection of many prior beliefs. However, almost half of the group retained their beliefs in miracles and E.S.P. whilst more than 40% retained their belief in visitors from outer space and that the solar system was created by a supernatural force. Specializations: misconceptions, conceptual change, earth sciences education.  相似文献   

20.
This paper reports an investigation into gender, ethnicity and rurality on Fijian students’ perceptions of science. A questionnaire was administered to a large sample of Form 5 classes. All students had completed a four year integrated "Basic Science" course in the junior secondary school and were continuing their studies in the upper secondary school. The responses were analysed to determine the significance of gender, ethnicity and rurality on the students’ perceptions of science, attitudes to science in the world and to science in the school curriculum. Specializations: gender issues and affective aspects of science and technology education. Specializations: Constructivism in science education, development education and gender issues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号