首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
文[1],[2]给出了利用圆的“两点式”方程 (x-x_1)(x-x_2) (y-y_1)(y-y_2)=0 ① (其中A(x_1,y_1)、B(x_2,y_2)为直径端点) 用以解决以直线与二次曲线相交的弦为直径的圆的有关问题的方法。读后颇受启发。本文从方程①中  相似文献   

2.
高中《平面解析几何》第68页第3题: 已知一个圆的直径端点是A(x_1,y_1)、B(x_2,y_2),证明:圆的方程是 (x-x_1)(x-x_2) (y-y_1)(y-y_2)=0。 这是解析几何中的一道典型习题,它给出了圆的方程的又一种形式。由于该形式含有圆的一条直径的两端点的坐标,故称它为圆的两点式方程。笔者在复习教学中,发现利用它可使以直线与二次曲线相交的弦为直径的圆的有关问题获得简捷解答。 应用1 先设出直线与二次曲线相交的弦两端点的坐标,然后由圆的两点式方程直接写出以相交的弦  相似文献   

3.
须知,这个命题并非对于平面上任意互相垂直的两条直线来说都是成立的。比如,当两条直线分别与两坐标轴垂直时,命题就不成立。因此在解题时,如遇到这种情况,就需要用其他方法来检验题目结论的正确与否。下面通过一个具体例子来说明这个问题。 例 证明以A(x_1,y_1)、B(x_2,y_2)两点为直径的两端的圆的方程是:(x-x_1)(x-x_2) (y-y_1)(y-y_2)=0。  相似文献   

4.
定理设二次曲线方程为F(x,y)=Ax~2+2Bxy+Cy~2+2Dx+2Ey +F=0。(1)过平面上任意一定点M(x_0,y_0)(除去曲线的中心)作动直线,与曲线(1)交于P_1、P_2两点,则弦P_1P_2的中点轨迹方程是Φ(x-x_0,y-y_0)÷F_1(x_0,y_0)(x-x_0) ÷F_2(x_0,y_0)(y-y_0)=0(2)并且曲线(1)与曲线(2)同族。其中Φ(x,y)=Ax~2+2Bxy+Cy~2 F_1(x,y)=Ax+By+D F_2(x,y)=Bx+Cy+E 证明:设过定点M(x_0,y_0)的动直线为  相似文献   

5.
定理设P(x_0,y_0)为非退化曲线f(x,y)=ax~2 2bxy cy~2 2dx 2ey f=0所在平面上一点.若过P向曲线f(x,y)=0所引切线存在,则切线方程为: [(ax_0 by_0 c)(x-x_0) (bx_0, cy_0 e)(y-y_0)]~2 =[a(x-x_0)~2 2b(x-x_0) c(y-y_0)~2] ·f(x_0,y_0)。 (1) 证设由P引f(x,y)=0的切线,切点为  相似文献   

6.
定义若圆上任一点到点 A 的距离与到点 B 的距离的比恒为常数λ(λ>0,λ≠1),则称该圆分有向线段()所成的比是λ;该圆称为有向线段()的定比分圆.定理设 A(x_1,y_1)、B(x_2,y_2)是定点,一个圆分有向线段()所成的比是λ,则该圆的圆心坐标是 x_0=(x_1-λ~2x_2)/(1-λ~2),y_0=(y_1-λ~2y_2)/(1-λ~2),半径是 r=λ|1-λ~2|·|AB|.证明:设 P(x,y)是圆上的动点,由 |PA|/|PB|=λ得(x-x_1)~2 (y-y_1)~2=λ~2[(x-x_2)~2 (y-y_2)~2],经整理,得x~2 y~2-2x·(x_1-λ~2x_2)/(1-λ~2)-2x·(y_1-λ~2y_2)/(1-λ~2)=(λ~2x_2~2 λ~2y_2~2-x_1~2-y_1~2)/(1-λ~2),配方并化简整理,得  相似文献   

7.
本文拟用解析法将康托尔(M.B.Cantor 1829~1920年,德国数学家、数学史专家)定理及其推广介绍如下: 1.引理求一点P(x,y),使到已知多边形A_1A_2…A_n的各顶点A_i(x_i,y_i)(i=1,2,…,n)的距离的平方之和为最小。解:PA_1~2 PA_2~2 … PA_Q~2=〔(x-x_1)~2 (x-x_2)~2 … (x-x_n)~2〕 〔(y-y_1)~2 (y-y_2)~2 … (y-y_n)~2〕=〔nx~2-2(x_1 x_2 … x_n)x x_1~2 x_2~2 … x_n~2〕 〔ny~2-2(y_1 y_2 … y_n)y y_1~2 y_2~2 … y_n~2〕,  相似文献   

8.
在平面几何中我们知道:“直径所对的圆周角是直角。”反之亦然。高中解析几何第二章有如下一道习题:“已知圆的直径的两端点是A(x_1,y_1)、B(x_2,y_2),证明:此圆的方程是(*)(x-x_l)(x-x_2) (y-y_l)(y-y_2)=0.”此问题容易证明,本文略去.特殊地,上述圆过原点的充要条件是(**)x_1·x_2 y1·y_2=0.在解几中若能巧妙地应用上述习题及其推论,有时往往会化难为易,化繁为简.下面以贵编辑部主编的《高三数学教学与测试》新二版中的问题为例,从四个方面谈其应用.一、求参数值或范围例1直线y=ax 1与双曲线3x~2-y~2=1相交…  相似文献   

9.
本文介绍抛物线弦所在直线的方程及其应用。设P_1P_2为抛物线y~2=2px的弦,其端点坐标分别为(x_1,y_2),(x_2,y_2),则P_1P_2所在直线方程为 (y-y_1)(y_1+y_2)=2px-y_1~2 (*) 证明:P_1P_2不垂直于y轴时,  相似文献   

10.
先看一个例题,如图1,⊙O的方程为x~2+y~2=1,A(2,1)为圆外一点,AP,AQ是⊙O的两条切线,P,Q是切点,求切点弦PQ的方程。解:据设,过点P的圆的切线方程为x_1a+y_1y=1(1)∵A(2,1)在切线上,∴2x_1+y_1=1,∴y_1=1-2x_1,同理y_2=1-2x_2。由两点式得切点弦PQ的方程为(x-x_1)/(x_1-x_2)=(y-(1-2x_1))/((1-2x_1)-(1-2x_2))经整理得2x+y=l(2) 方程(2)正好与方程(1)中把P(x_1,y_1)的坐标换成A的坐标。这是巧合吗?不!有如下结论:自圆外一点A(m,n)向圆引两切线,所得切点弦方程与切点为(x_1,y_1)的圆的切线方程中把(x_1,y_1)换成(m,n)的  相似文献   

11.
从平面几何到代数、立体几何和解析几何,证明三点共线的命题、方法、技巧,实在不少,它们都可以归结为等价命题.(1)P、Q、R 三点共线(在同一条直线上).(2)P 在直线 QR 上.(3)P 到直线 QR 的距离为0.(4)P、Q、R 都是平面α与β的公共点.(5)P、Q、R 是△ABC 外接圆上一点分别在直线AB、BC、CA 上的射影.(6)S_(△PQR)=0。(7)三点 P、Q、R 在直线 AB 同侧,且 S_(△PAB)=S_(△QAB)=S_(△RAB).(8)线段 PQ、QR、PR 中,有两条之和等于第三条.(9)k_(PQ)=k_(PR).(10)若直线 PQ 的方程为 Ax By C=0,则直线 PR 的方程为 kAx kBy kC=0(k≠0为常数).若设三点 P、Q、R 的坐标分别为(x_1,y_1)、(x_2,y_2)、(x_3,y_3),则有(11)(x_3,y_3)满足方程(x-x_1)/(x_2-x_1)=(y-y_1)/(y_2-y_1).(12)设λ_1=(x_1-x_2)/(x_2-x_3),λ_2=(y_1-y_2)/(y_2-y_3),则λ_1=λ_2.  相似文献   

12.
我们熟知,直线的点斜式方程 y-y_1=k(x-x_1)与参数方程x=x_1 tCosα y=y_1 tSinα(其中 tgα=k)对应,而园锥曲线x~2/a~2 y~2/b~2=1,x~2/a~2-y~2/b~2=1和 y~2=2px分别与参数方程 x=aCost y=bsint,x=aSect,y=btgt,和x=2pt~2 y=2pt 对应。在直线的参数方程x=x_1 tCosα y=y_1 tSinα中,参数 t 有简单明确的几何意义——t 是对应的动点 P(x,y)到定点 M(x_1,y_1)的有  相似文献   

13.
正笔者在利用几何画板研究有心圆锥曲线的切线时发现一个简洁有趣的性质,现介绍如下:命题1自圆C_1:x~2+y~2=a~2+b~2上任一点P向椭圆C_2:x~2/a~2+y~2/b~2=1(a,b0)引两条切线,则这两条切线互相垂直.证明:设P点的坐标为(x_0,y_0),自这一点向椭圆C_2引的两切线分别为l_1和l_2.(1)当切线的斜率存在且不为0时,设过P的切线方程为y-y_0=k(x-x_0),由y-y_0=k(x-x_0),x~2/a~2+y~2/b~2=1得(b~2+k~2a~2)x~2+  相似文献   

14.
求已知点P(x_0,Y_0)关于直线y=kx m的对称点P'(x,y),通常是解方程组 {1/2(y y_0)=k·1/2(x x_0) m (y-y_0)/(x-x_0)=-(1/k) 但当k=±1时,可直接用对称轴方程y=±x m即x=±y±m代换以求P'点的位置。定理1 若P'(x,y)是点P(x_0,y_0)关于直线y=x m的对称点,则 {x=y_0-m, y=x_0 m。证明比较简单,兹从略。特别地,当m=0时,点p(x_0,y_0)和点p'(y_0,x_0)关于直线y=x对称。推论1 曲线f(x,y)=0关于直线y=x m对称的曲线方程是f(y-m,x m)  相似文献   

15.
本文介绍利用直线两点式参数方程来证明比例式的一种规范化有效方法,供参考。一、直线两点式参数方程如图, 设P_1(x_1,y_1)、P(x_2,y_2)、P(x,y)都是直线l上的点,且P_1P/PP_2=λ则(x=x_1+λx_2/1+λ)/(y=y_+λy_2/1+λ)(λ为参数,λ≠-1) 即为过P_1、P_2两点的直线的参数方程。∵由(x_1-x_2)/(x-x_2)=1+λ 及  相似文献   

16.
题 在直角坐标平面上,如果直线l_1:A_(1x) B_(1y) C_1=0斜率为k_1,直线l:Ax By C=0斜率为k,直线l和l_1的交点为D(x_0,y_0),则直线l_1关于直线l的对称直线l_2的方程是:y-y_0=(2k k_1k~2-k_1)/(1 2kk_1-k~2) (x-x_0)。  相似文献   

17.
在直角坐标平面内点P(X_0,y_0),直线l:Ax By C=0,过 P 作 l 的垂线 PQ,设垂足为 Q(x',y'),显然直线 PQ 的方程为:B(x-x_0)-A(y-y_0)=0,令x'-x_0=λA,则 y-y_0=λB,又Q∈l,则有:A(x_0 λA) B(y_0 λB) c=0.解得:λ=-Ax_0 By_0 C/A~2 B~2,显然λ是由点 P 和直线 l 确定的常量.我们把它记作λ(P,l),有时简记为λ.显然,过 P 作 l 的垂线之垂足 Q(x_0 XA,y_0 λB);P 关于 l 的对称点 P'(z_0 2λA,y_0 2λB).  相似文献   

18.
本文应用极坐标系中过P_1(ρ_1,θ_1),P_2(ρ_2,θ_2)两点的直线方程:sin(θ_2-θ_1)/ρ=sin(θ_2-θ)/ρ_1 sin(θ-θ_1)/ρ_2(ρ_1≠0,ρ_2≠0)来证明几何中关于线段相等的竞赛题。这一直线极坐标两点式可应用坐标互化公式:x=ρcosθ,y=ρsinθ代人直角坐标系两点方程:(x-x_1)/(y-y_1)=(x_2-x_1)/(y_2-y_1)中,通过三角恒等变形得到。例 1 以等边△ABC的边BC作直径向形外作半圆。在这半圆上取点K和L分半圆  相似文献   

19.
解析几何中的中点坐标公式大家是十分熟悉的:由这个公式易看出一个事实,即x_1,x,x_2;y_1,y,y_2两组数都是等差数列,不妨设其公差分别为d_1,d_2。本文的目的在于探讨这两个公差之比的几何意义及其应用。设P_1(x_1,y_1),P_2(x_2,y_2)分别是直线l与二次曲线C的两个交点,P(x,y)为P_1P_2的中点,则d_2/d_1就是弦P_1P_2的斜率k。这一几何意义是不难证明的事实上,d_2/d_1=(y-y_1)/(x-x_1)=k。  相似文献   

20.
我们知道,在直角坐标系中,设点P_1(x_1,y_1)、P_2(x_2,y_2),若点P(x,y)为有向线段P_1P_2的内(外)分点,则点P分P_1P_2所成的比λ为 λ=(P_1P)/(PP_2)=(x-x_1)/(x_2-x)(=(y-y_1)/(y_2-y)>0(<0)。 (*) 特别地,当线段P_1P_2落在x轴上时,纵坐标为0,情形就更加明了(以下讨论仅在x轴上进行,且不妨约定x_10(λ<0),则P为P_1P_2的内(外)分点,亦即P点介于P_1P_2之间(之外),这时有x_1相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号