首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Some IRT models can be equivalently modeled in alternative frameworks such as logistic regression. Logistic regression can also model time-to-event data, which concerns the probability of an event occurring over time. Using the relation between time-to-event models and logistic regression and the relation between logistic regression and IRT, this article outlines how the nonparametric Kaplan-Meier estimator for time-to-event data can be applied to IRT data. Established Kaplan-Meier computational formulas are shown to aid in better approximating “parametric-type” item difficulty compared to methods from existing nonparametric methods, particularly for the less-well-defined scenario wherein the response function is monotonic but invariant item ordering is unreasonable. Limitations and the potential for Kaplan-Meier within differential item functioning are also discussed.  相似文献   

2.
Simulation studies are extremely common in the item response theory (IRT) research literature. This article presents a didactic discussion of “truth” and “error” in IRT‐based simulation studies. We ultimately recommend that future research focus less on the simple recovery of parameters from a convenient generating IRT model, and more on practical comparative estimation studies when the data are intentionally generated to incorporate nuisance dimensionality and other sources of nuanced contamination encountered with real data. A new framework is also presented for conceptualizing and comparing various residuals in IRT studies. The new framework allows even very different calibration and scoring IRT models to be compared on a common, convenient, and highly interpretable number‐correct metric. Some illustrative examples are included.  相似文献   

3.
项目反应理论(Item Response Theory,IRT)是现代教育心理测量领域中最有影响的一种测量理论,它的一个明确目标是扩展模型的种类以至于能够处理实际测试中任何形式的反应数据。在已有的各种模型研究中,对于多级评分项目,只考虑到项目区分度和难度。但在实际测验中,此类项目还可能存在猜测度。本研究基于Samejima等级反应模型,将项目猜测度融合到多级评分模型中,提出了三参数等级反应模型(Three-parameter Graded Response Model,3PL-GRM)。由于忽略多级反应项目的猜测度会使得该项目的信息量虚假升高,本研究还进一步将3PL—GRM的信息函数应用到试卷质量分析中。  相似文献   

4.
In educational environments, monitoring persons' progress over time may help teachers to evaluate the effectiveness of their teaching procedures. Electronic learning environments are increasingly being used as part of formal education and resulting datasets can be used to understand and to improve the environment. This study presents longitudinal models based on the item response theory (IRT) for measuring persons' ability within and between study sessions in data from web-based learning environments. Two empirical examples are used to illustrate the presented models. Results show that by incorporating time spent within- and between-study sessions into an IRT model; one is able to track changes in ability of a population of persons or for groups of persons at any time of the learning process.  相似文献   

5.
Mokken scale analysis (MSA) is a probabilistic‐nonparametric approach to item response theory (IRT) that can be used to evaluate fundamental measurement properties with less strict assumptions than parametric IRT models. This instructional module provides an introduction to MSA as a probabilistic‐nonparametric framework in which to explore measurement quality, with an emphasis on its application in the context of educational assessment. The module describes both dichotomous and polytomous formulations of the MSA model. Examples of the application of MSA to educational assessment are provided using data from a multiple‐choice physical science assessment and a rater‐mediated writing assessment.  相似文献   

6.
Drawing valid inferences from item response theory (IRT) models is contingent upon a good fit of the data to the model. Violations of model‐data fit have numerous consequences, limiting the usefulness and applicability of the model. This instructional module provides an overview of methods used for evaluating the fit of IRT models. Upon completing this module, the reader will have an understanding of traditional and Bayesian approaches for evaluating model‐data fit of IRT models, the relative advantages of each approach, and the software available to implement each method.  相似文献   

7.
This article considers psychometric properties of composite raw scores and transformed scale scores on mixed-format tests that consist of a mixture of multiple-choice and free-response items. Test scores on several mixed-format tests are evaluated with respect to conditional and overall standard errors of measurement, score reliability, and classification consistency and accuracy under three item response theory (IRT) frameworks: unidimensional IRT (UIRT), simple structure multidimensional IRT (SS-MIRT), and bifactor multidimensional IRT (BF-MIRT) models. Illustrative examples are presented using data from three mixed-format exams with various levels of format effects. In general, the two MIRT models produced similar results, while the UIRT model resulted in consistently lower estimates of reliability and classification consistency/accuracy indices compared to the MIRT models.  相似文献   

8.
ABSTRACT

Based on concerns about the item response theory (IRT) linking approach used in the Programme for International Student Assessment (PISA) until 2012 as well as the desire to include new, more complex, interactive items with the introduction of computer-based assessments, alternative IRT linking methods were implemented in the 2015 PISA round. The new linking method represents a concurrent calibration using all available data, enabling us to find item parameters that maximize fit across all groups and allowing us to investigate measurement invariance across groups. Apart from the Rasch model that historically has been used in PISA operational analyses, we compared our method against more general IRT models that can incorporate item-by-country interactions. The results suggest that our proposed method holds promise not only to provide a strong linkage across countries and cycles but also to serve as a tool for investigating measurement invariance.  相似文献   

9.
An approach called generalizability in item response modeling (GIRM) is introduced in this article. The GIRM approach essentially incorporates the sampling model of generalizability theory (GT) into the scaling model of item response theory (IRT) by making distributional assumptions about the relevant measurement facets. By specifying a random effects measurement model, and taking advantage of the flexibility of Markov Chain Monte Carlo (MCMC) estimation methods, it becomes possible to estimate GT variance components simultaneously with traditional IRT parameters. It is shown how GT and IRT can be linked together, in the context of a single-facet measurement design with binary items. Using both simulated and empirical data with the software WinBUGS, the GIRM approach is shown to produce results comparable to those from a standard GT analysis, while also producing results from a random effects IRT model.  相似文献   

10.
Standard 3.9 of the Standards for Educational and Psychological Testing ( 1999 ) demands evidence of model fit when item response theory (IRT) models are employed to data from tests. Hambleton and Han ( 2005 ) and Sinharay ( 2005 ) recommended the assessment of practical significance of misfit of IRT models, but few examples of such assessment can be found in the literature concerning IRT model fit. In this article, practical significance of misfit of IRT models was assessed using data from several tests that employ IRT models to report scores. The IRT model did not fit any data set considered in this article. However, the extent of practical significance of misfit varied over the data sets.  相似文献   

11.
We consider a general type of model for analyzing ordinal variables with covariate effects and 2 approaches for analyzing data for such models, the item response theory (IRT) approach and the PRELIS-LISREL (PLA) approach. We compare these 2 approaches on the basis of 2 examples, 1 involving only covariate effects directly on the ordinal variables and 1 involving covariate effects on the latent variables in addition.  相似文献   

12.
Both structural equation modeling (SEM) and item response theory (IRT) can be used for factor analysis of dichotomous item responses. In this case, the measurement models of both approaches are formally equivalent. They were refined within and across different disciplines, and make complementary contributions to central measurement problems encountered in almost all empirical social science research fields. In this article (a) fundamental formal similiarities between IRT and SEM models are pointed out. It will be demonstrated how both types of models can be used in combination to analyze (b) the dimensional structure and (c) the measurement invariance of survey item responses. All analyses are conducted with Mplus, which allows an integrated application of both approaches in a unified, general latent variable modeling framework. The aim is to promote a diffusion of useful measurement techniques and skills from different disciplines into empirical social research.  相似文献   

13.
Linear factor analysis (FA) models can be reliably tested using test statistics based on residual covariances. We show that the same statistics can be used to reliably test the fit of item response theory (IRT) models for ordinal data (under some conditions). Hence, the fit of an FA model and of an IRT model to the same data set can now be compared. When applied to a binary data set, our experience suggests that IRT and FA models yield similar fits. However, when the data are polytomous ordinal, IRT models yield a better fit because they involve a higher number of parameters. But when fit is assessed using the root mean square error of approximation (RMSEA), similar fits are obtained again. We explain why. These test statistics have little power to distinguish between FA and IRT models; they are unable to detect that linear FA is misspecified when applied to ordinal data generated under an IRT model.  相似文献   

14.
Multilevel bifactor item response theory (IRT) models are commonly used to account for features of the data that are related to the sampling and measurement processes used to gather those data. These models conventionally make assumptions about the portions of the data structure that represent these features. Unfortunately, when data violate these models' assumptions but these models are used anyway, incorrect conclusions about the cluster effects could be made and potentially relevant dimensions could go undetected. To address the limitations of these conventional models, a more flexible multilevel bifactor IRT model that does not make these assumptions is presented, and this model is based on the generalized partial credit model. Details of a simulation study demonstrating this model outperforming competing models and showing the consequences of using conventional multilevel bifactor IRT models to analyze data that violate these models' assumptions are reported. Additionally, the model's usefulness is illustrated through the analysis of the Program for International Student Assessment data related to interest in science.  相似文献   

15.
A Monte Carlo simulation technique for generating dichotomous item scores is presented that implements (a) a psychometric model with different explicit assumptions than traditional parametric item response theory (IRT) models, and (b) item characteristic curves without restrictive assumptions concerning mathematical form. The four-parameter beta compound-binomial (4PBCB) strong true score model (with two-term approximation to the compound binomial) is used to estimate and generate the true score distribution. The nonparametric item-true score step functions are estimated by classical item difficulties conditional on proportion-correct total score. The technique performed very well in replicating inter-item correlations, item statistics (point-biserial correlation coefficients and item proportion-correct difficulties), first four moments of total score distribution, and coefficient alpha of three real data sets consisting of educational achievement test scores. The technique replicated real data (including subsamples of differing proficiency) as well as the three-parameter logistic (3PL) IRT model (and much better than the 1PL model) and is therefore a promising alternative simulation technique. This 4PBCB technique may be particularly useful as a more neutral simulation procedure for comparing methods that use different IRT models.  相似文献   

16.
A polytomous item is one for which the responses are scored according to three or more categories. Given the increasing use of polytomous items in assessment practices, item response theory (IRT) models specialized for polytomous items are becoming increasingly common. The purpose of this ITEMS module is to provide an accessible overview of polytomous IRT models. The module presents commonly encountered polytomous IRT models, describes their properties, and contrasts their defining principles and assumptions. After completing this module, the reader should have a sound understating of what a polytomous IRT model is, the manner in which the equations of the models are generated from the model's underlying step functions, how widely used polytomous IRT models differ with respect to their definitional properties, and how to interpret the parameters of polytomous IRT models.  相似文献   

17.
Bock, Muraki, and Pfeiffenberger (1988) proposed a dichotomous item response theory (IRT) model for the detection of differential item functioning (DIF), and they estimated the IRT parameters and the means and standard deviations of the multiple latent trait distributions. This IRT DIF detection method is extended to the partial credit model (Masters, 1982; Muraki, 1993) and presented as one of the multiple-group IRT models. Uniform and non-uniform DIF items and heterogeneous latent trait distributions were used to generate polytomous responses of multiple groups. The DIF method was applied to this simulated data using a stepwise procedure. The standardized DIF measures for slope and item location parameters successfully detected the non-uniform and uniform DIF items as well as recovered the means and standard deviations of the latent trait distributions.This stepwise DIF analysis based on the multiple-group partial credit model was then applied to the National Assessment of Educational Progress (NAEP) writing trend data.  相似文献   

18.
Functional form misfit is frequently a concern in item response theory (IRT), although the practical implications of misfit are often difficult to evaluate. In this article, we illustrate how seemingly negligible amounts of functional form misfit, when systematic, can be associated with significant distortions of the score metric in vertical scaling contexts. Our analysis uses two‐ and three‐parameter versions of Samejima's logistic positive exponent model (LPE) as a data generating model. Consistent with prior work, we find LPEs generally provide a better comparative fit to real item response data than traditional IRT models (2PL, 3PL). Further, our simulation results illustrate how 2PL‐ or 3PL‐based vertical scaling in the presence of LPE‐induced misspecification leads to an artificial growth deceleration across grades, consistent with that commonly seen in vertical scaling studies. The results raise further concerns about the use of standard IRT models in measuring growth, even apart from the frequently cited concerns of construct shift/multidimensionality across grades.  相似文献   

19.
Even though Bayesian estimation has recently become quite popular in item response theory (IRT), there is a lack of works on model checking from a Bayesian perspective. This paper applies the posterior predictive model checking (PPMC) method ( Guttman, 1967 ; Rubin, 1984 ), a popular Bayesian model checking tool, to a number of real applications of unidimensional IRT models. The applications demonstrate how to exploit the flexibility of the posterior predictive checks to meet the need of the researcher. This paper also examines practical consequences of misfit, an area often ignored in educational measurement literature while assessing model fit.  相似文献   

20.
The usefulness of item response theory (IRT) models depends, in large part, on the accuracy of item and person parameter estimates. For the standard 3 parameter logistic model, for example, these parameters include the item parameters of difficulty, discrimination, and pseudo-chance, as well as the person ability parameter. Several factors impact traditional marginal maximum likelihood (ML) estimation of IRT model parameters, including sample size, with smaller samples generally being associated with lower parameter estimation accuracy, and inflated standard errors for the estimates. Given this deleterious impact of small samples on IRT model performance, use of these techniques with low-incidence populations, where it might prove to be particularly useful, estimation becomes difficult, especially with more complex models. Recently, a Pairwise estimation method for Rasch model parameters has been suggested for use with missing data, and may also hold promise for parameter estimation with small samples. This simulation study compared item difficulty parameter estimation accuracy of ML with the Pairwise approach to ascertain the benefits of this latter method. The results support the use of the Pairwise method with small samples, particularly for obtaining item location estimates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号