首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
整系数一元二次方程ax2+bx+c=0(a ≠0)有有理根的充要条件是:△=b2-4ac为一有理数的平方.而有整数根,△必为一完全平方式. 注意这里a、b、c皆为整数,前者△是有理数的平方,而非一般认为的完全平方式.而后者  相似文献   

2.
对于实数系一元二次方程 ax2 +bx+c=0 (a≠ 0 ) ,如果 b2 - 4ac>0 ,那么方程有两个不相等的实数根 ;b2 - 4ac<0 ,那么方程没有实数根 .这就是一元二次方程根的判别式定理 ,我们把△ =b2 - 4ac叫做方程 ax2+bx+c=0 (a≠ 0 )的判别式 .这个定理的逆命题也是成立的 .判别式定理揭示了一元二次方程的系数与它的根之间的内在联系 ,它的应用主要有以下几个方面 .1 .判断方程根的性质 .在初中阶段我们研究的是实数系数的一元二次方程 ,有下列命题 :(1 )一元二次方程 ax2 +bx+c=0 (a≠ 0 )中 ,如果 a、 b、 c是有理数且△ =b2 - 4ac是一个完全平方数…  相似文献   

3.
大家知道,对于有理数系数的一元二次方程ax~2+bx+c=0(a≠0),有有理数根的条件是△=b~2-4ac为一个有理数的平方。关于求整数根问题,一般地是在以上结论基础上利用求根公式、判别式、根与系数的关系(韦达定理)等二次方程的基本理论并结合整  相似文献   

4.
关于二次三项式ax~2+bx+c(a≠0),本文主要研究两个方面的问题: 一、二次三项式能因式分解的判定二次三项式ax~2+bx+c(a≠0)在给定数集内能否进行因式分解,这是中学代数的一个重要课题。现介绍如下四个定理。定理一有理系数二次二项式ax~2+bx+c(a≠0)在有理数集内能分解因式的充要条件是△=b~2-4ac为一个有理效的平方。证明:(1)必要性,若 ax~2+bx+c=a(x-x_1)(x-x_2),为有理数,因a,b为有理数x_1,x_2也为有理数,故只有(b~2-4ac)~(1/2)为有理数。设(b~2-4ac=|m|(m为有理数),则b~2-4ac=m~2。即判别式△=b~2-4ac是一个有理数的平方。  相似文献   

5.
下题是我们在学习一元二次方程的根的判别式时所常见的: 如果m为有理数,试确定k值,使方程x~2-2mx+10x+4k=0的根是有理数。拿到题目后,有的同学可能会这样解吧! 解原方程即x~2+(10-2m)x+4k=0,要使它的根是有理数,只需其根的判别式△=(10-2m)~2-16k=100-40m+4m~2-16k=4(m~2-10m+25-4k) ①是完全平方式,即m~2-10m+25-4k=0有相等的根,即以m为元的此二次方程的判别式△′=100-4(25-4k)=0,  相似文献   

6.
一元二次方程ax2+bx+c=0(a≠0)根的判别式Δ=b2-4ac是初中数学的一个重要知识点,本文结合例题,说说应用一元二次方程根的判别式(以下简称判别式)解题时需注意的几点.一、使用判别式的条件方程ax2+bx+c=0(a≠0)的a≠0是使用判别式的前提条件.例1 关于x的一元二次方程k2x2-(2k+1)x+1=0有两个实数根,求k的取值范围.分析:根据题设条件,可知Δ=[-(2k+1)]2-4k2≥0且k2≠0,解得k≥-14且k≠0. 二、方程有两个实数根与方程有实数根区别方程ax2+bx+c=0有两个实数根,则必有≠0;但方程ax2+bx+c=0有实数根,则它可有两个实数根,也可能有一个实数根,…  相似文献   

7.
刘建华 《考试周刊》2008,(52):59-59
对于整系数一元二次方程ax2+bx+c=0(a≠0)(1)方程有有理数根的条件是△=b2-4ac为一有理数的平方;(2)若a、b、c为奇数,则方程无整数根;(3)若a、b为偶数,而c是奇数,则方程无整数根。  相似文献   

8.
一元二次方程ax2 +bx +c =0(a≠0)根的判别式是b2-4ac,通常用符号"△"来表示.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根;反之也成立.判别式不仅用来判断一元二次方程根的情况,也可以解决其他数学问题.一、求字母的值 例1 (2012年广州卷)已知关于x的一元二次方程x2-2√3x+k=0有两个相等的实数根,则k的值为____. 解:∵方程x2-2√3x+k=0有两个相等的实数根,∴△=(-2√3)2-4k=0. ∴12-4k=0,解得k=3.故填3. 温馨小提示:这是判别式的典型应用.我们要熟记判别式值的正负与根的个数之间的关系.  相似文献   

9.
同学们都知道 ,一元二次方程ax2 +bx +c =0 (a≠ 0 )的根与它的系数a、b、c有很大的关系。由于b2 - 4ac可以判定ax2 +bx +c =0 (a≠ 0 )的根的情况 ,所以b2 - 4ac叫做上述一元二次方程的根的判别式 ,通常用符号“△”来表示。判别式的性质 :一元二次方程ax2 +bx +c =0 (a≠ 0 ) ,当△ >0时 ,有两个不相等的实数根 ;当△ =0时 ,有两个相等的实数根 ;当△ <0时 ,没有实数根。反过来也成立。特别注意 ,根的判别式是在一元二次方程一般情形下得出的 ,因此必须把所给的方程化为一般形式 ,确定系数a、b、c后 ,再用此性质。下面就此内容给同学们介…  相似文献   

10.
判别式法是判别实系数一元二次方程有无实数根的主要方法,是初中数学中非常重要的内容.判别式"△"的应用可以说是"三头六臂",本文为你一一道来.一、"三头"1.由"△"的符号判定方程根的情况例1不解方程,判断一元二次方程x~2-2kx 4(k-1)=0的根的情况.解∵a=1,b=-2k,c=4(k-1),∴A=b~2-4ac=(-2k)~2-4×1×4(k-1)= 4k~2-16k 16=4(k~2-4k 4)=4(k-2)~2≥0.∴方程有两个实数根.评析运用一元二次方程的根的  相似文献   

11.
在一元二次方程一般式中(ax~2+bx+c=0,其中a≠0),有其根的判别式Δ=b~2-4ac,当Δ>0时有两个不等实根,当Δ=O时有两个相等实根,当Δ<0时无实根。从一元二次方程的求根公式中能更好地理解判别式本身。还可推广到利用判别式判断二次三项式是否是完全平方式,一元二次方程有有理数根的条件,有整数根的条件,从判别式自身表现的不同特征探索其用法,更有利于判  相似文献   

12.
只含有一个未知数(即“元”),并且未知数的最高次数为2(即“次”)的整式方程叫做一元二次方程.一元二次方程的标准形式(即所有一元二次方程经整理都能得到的形式)是ax2+bx+c=0(n,b,c为常数,x为未知数,且a≠0). 解一元二次方程的方法很多,具体有因式分解法[包括“十字相乘法即x2+ (p+q)x+pq=(x+p)(x+q)”“提公因式法”“平方差公式”和“完全平方公式”]、公式法、配方法等等.  相似文献   

13.
一元二次方程ax2 +bx +c =0 (a≠ 0 )的根的判别式△ =b2 - 4ac ,不仅可以判定方程实根情况 ,还可以用它判别二次三项式ax2 +bx +c因式分解的方法与范围 ,求抛物线y =ax2 +bx +c(a≠ 0 )与x轴交点的个数 ,以及证明某些几何不等式问题 ,现以有关中考试题为例 ,简述一元二次方程根的判别式的应用  相似文献   

14.
一元二次方程的整数解问题,大多出现在竞赛试题中,现略作归类,以供同学们在解竞赛题时参考. 一、利用根的判别式法定理:对于一元二次方程ax2+bx+c=0(a≠0.a、b、c为有理数),若判  相似文献   

15.
一元二次方程ax2+bx+c=0要求a≠0,有实数根时要求判别式△≥0.但同学们在解一元二次方程的有关问题时常忽视这些隐含条件,现举例如下:  相似文献   

16.
对于一元二次方程 ax~2+bx+c=0, (a≠0) (*) 韦达定理及其逆定理又可以叙述成下述形式: 命题Ⅰ方程(*)的两根之和为常数p,两根之积为常数q的充要条件是 p=-b/a,q=c/a。本文从命题Ⅰ出发,推出以下一组很有用的命题。命题Ⅱ方程(*)的两根互为相反数的充要条件是b=0。  相似文献   

17.
对于一元二次方程ax^2+bx+c=0(a≠0)的实数根问题,可以用根的判别式△=b^2-4ac来判别,但对于它的有理根、整数根问题就没有统一的方法来判别,只能具体情况具体分析.本文对这一问题作一探讨.  相似文献   

18.
判别式法     
根据b~2-4ac的值的符号可以判别一元二次方程ax~2+bx+c=0(a≠0)的根的情况,我们把b~2-4ac叫做一元二次方程的根的判别式,通常用符号"△"来表示.具体判别方法是:一元二次方程ax~2+bx+c=0(a≠0),(1)当△>0时,方程有两个不相等的实数根;(2)当△=0时,方程有两个相等的实数根;(3)当△<0时,方程没有实数根.这三  相似文献   

19.
<正>二次函数y=f(x)=ax2+bx+c(a≠0)的图像(抛物线)关于直线x=-b/2a对称.如果有f(p)=f(q),且p≠q,则f(p+q)=c.简证如下:法1 f(p)=f(q),因为对称轴方程为x=-b/2a=(p+q)2,所以,p+q=-b/a.所以f(p+q)=f(-b/a)=a(-  相似文献   

20.
利用判别式△=b^2-4ac能判断关于x的一元二次方程ax^2+bx+c=0(a≠0)的根的情况,笔者类比发现利用△4=(p/4)^4-(q/3)^3也能判断方程x^4+px+q=0的根的情况?不妨约定△4=(p/4)^4-(q/3)^3为方程x^4+px+q=0的根的判断式,可以得出下列三个结论:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号