首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Black crusts formed on limestone built into the King's Gate represent the most important process in stone deterioration that is occurring in this part of the monumental complex of the Belgrade Fortress (Serbia). Of special importance is the association of salts (namely gypsum and syngenite). Syngenite is a common secondary deposit on granite monuments and on medieval stained glass (i.e., on K-containing materials). However, its appearance over calcareous substrates is not apparent, particularly in cases where cement mortar was not used for bounding. The origins of the potassium and sulphate ions required for syngenite formation are related to meteoritic water, which penetrates the soil above the arch of King's Gate. Water dissolves some soil components and becomes enriched with various ions before coming into contact with the limestone blocks. Enriched water contains two times more K+ and SO42? ions than pristine meteoritic water does. The source of the required ions is potassium-sulphate that is present in agricultural fertilisers that are used above the monument. The proposed mechanism for syngenite formation was additionally supported with laboratory experiment. The results of X-ray diffractometry and SEM-EDS analyses of limestone treated with potassium-sulphate solution and sulphuric acid suggest the possibility that the syngenite was formed over calcite:CaCO3 + K2SO4 + H2SO4  K2Ca(SO4)2 H2O + CO2↑However, the complex mechanisms of gypsum and syngenite formation under natural conditions (variable concentration of potassium and sulphate ions, intermediates phases, temperature changes, humidity, the amount of disposable water etc.) do not exclude the possibility of syngenite formation over gypsum.  相似文献   

2.
Two multivariate statistical tools  principal components analysis and cluster analysis  were applied to aid in the interpretation of the historical development of St. John the Baptist's church (?i?e, Slovenia). With these methods it was possible to distinguish between the types of mortar used in the Romanesque and Gothic time periods. The investigated structure is a ruin with poorly preserved fragments of historical mortars, so tracing the individual stages of its construction proved to be a demanding task. Its chemical composition was determined by inductively coupled plasma mass spectrometry (ICP-MS) and the results of the content of various oxides were statistically evaluated to interpret the age of the southern wall of the church.  相似文献   

3.
We report the first results of a research study aimed at developing a new strategy for the conservation of wooden structural elements present in historical buildings, based on moisture regulating systems. As has been happening for artefact preservation in museums, the idea is to develop systems based on the ability of some highly hygroscopic materials to moderate variations in relative humidity. These materials could adsorb and release moisture to reduce the extreme values of humidity in the micro-climate, for example between wooden beams and masonry. In order to experimentally verify this possibility using current, low cost and easy handling building materials, 5 bentonite samples were laboratory processed to improve their adsorbing properties by means of treatment with sodium carbonate at 3 concentrations: 2, 3 and 4% by weight. The effectiveness of ion exchange between sodium carbonate and bentonite was controlled by measuring the swelling volume of the bentonites. All the samples (n = 15) were tested for their hygroscopic properties. Adsorption isotherms were measured at 25 °C, using desiccators with silica gel, saturated salt solutions and bi-distilled water. A comparison between isotherms of one of the lower hygroscopic treated sample of bentonite and of a sample of wood and of a sample of brick and some numerical analyses with the Delphin code were made in order to evaluate the potential use of this bentonite as a moisture regulating system for the preservation of historical wooden elements. Results show that it seems to be possible to use bentonites as a moisture buffering material in order to reduce moisture content in wooden beams at least during their adsorption phase. It remains to investigate their desorption phase and their behaviour if they be in a saturation condition. Further studies are currently under way.  相似文献   

4.
‘Marmor Misium’ was one of the most used granites of antiquity, especially for the manufacture of columns and slabs. It was quarried in the area of Kozak (Turkey) and used locally from the Late Hellenistic period and later, probably at the end of the 1st century AD, exported to Rome and other important Roman towns of the Mediterranean sea. It seems that ‘Marmor Misium’ continued to be quarried until the Early Byzantine time; it is now still quarried for local use (road paving, etc.). In spite of its historical importance and geological interest, this granite has never been the subject of detailed petrological studies. That is why in this work it has been sampled from various outcrops of the plutonite and in abandoned ancient quarries and characterised petrographically and geochemically. From the petrographic point of view, the plutonites of Kozak are medium-grained biotite-hornblende granite and granodiorite composed of 34.2–53 % (modal) zoned plagioclase, 23.7–35.4 % K-feldspar, 21.4–29 % anhedral quartz, 4.9–10 % brown biotite and 7.7 % green hornblende. These rocks are I-type metaluminous granitoids of high-k calc-alkaline orogenic series forming a crystallised body at a depth of about 10 km. The positive distinction between ‘Marmor Misium’ and two other granites used in antiquity and macroscopically very similar to it, those from the Elba and Giglio islands (Italy), is easily made by considering the absence of hornblende, the peraluminous character and the lower Sr and Ba and higher Rb contents for the latter.  相似文献   

5.
Acetic and formic acid vapors emitted from woodwork in historical organs are very important corrosive agents for lead pipes. These acids are slowly released from the wood both during playing and when the pipes are silent. To inhibit this emission process, the wood surface can be modified, by creating a protective layer with alkaline features. However, a coating of wood is not recommended since this could modify the appearance and create a layer not perfectly compatible with the substrate. For this reason, we propose to use some innovative nanotechnology that has been successfully applied for the deacidification of wood samples coming from the Vasa shipwreck. Application of calcium (or magnesium) hydroxide nanoparticles, with sizes ranging from 30–150 nm, allowed a homogeneous distribution of particles through the surface layer of wood simply by soaking (or spraying) it in a alcoholic (or mixed with less polar solvents) dispersion of nanoparticles. Nanoparticles do not modify the wood appearance and distribute randomly within the first layers of wood. The small size of particles accounts for the high reactivity with CO2 from the air, to give the alkaline reserve of carbonates that provide high efficacy in the neutralization of gaseous acids. The emission of volatile organic compounds (VOC) from the treated wood was determined by using an emission test cell, Field and Laboratory Emission Cell (FLEC). The results show that the emissions of acetic acid vapor from nanoparticles treated wood was very low (< 70 μg/m2 h) during the first 13 month. In contrast, untreated wood emitted high concentrations of acetic acid vapor (200–400 μg/m2 h).  相似文献   

6.
The microgravity method is one of the geophysical tools used in engineering and environmental and archaeological researches, where the detection of subsurface cavities or buried structures is essential. In this study, this technique has been revealed to be an efficient and respectful tool for use in Cultural Heritage restoration studies, such as those carried out in the restoration of historical sites in which the elements to be examined are beneath a shallow coating of material. Therefore, the aim of this microgravimetric survey is to define the exact position and dimensions of a subsurface structure (rainwater cistern) through microgravity response of the medium.For this purpose, the subsurface structure of San Gerónimo Cloister of the Vall de Crist Carthursian Monastery (14th century) has been researched. This monastery was known to be the largest Carthusian Monastery in the region of Valencia (Spain) and one of the most remarkable of the ancient Corona de Aragón. A rectangular grid of microgravity measurement station points was designed to cover the entire surface of the cloister. In addition, a microgravimetric profile was acquired along a hillside close to the Carthusian buildings in order to obtain the density value of the medium.The study was performed using a LaCoste&Romberg D203 gravimeter to detect and to map the shallow subsurface rainwater cistern that probably exits beneath it. This gravimeter has a sensitivity of approximately 1 μgal (μgal = 1.10−8 ms−2) and an accuracy of 3–5 μgal for relative gravity measurements.Two contour maps were calculated (observed gravity and Bouguer gravity values) in order to improve the interpretation results. On these maps we can observe the shape of the body that is causing the perturbation in gravity values. And what is more, it led us to deduce that the central area of the cavity is deeper than the border area. In addition, we can asses that the cavity is 8 m wide and 12 m long, and is symmetrical along its longitudinal axis, but not along its transversal axis.Also, a microgravimetric inversion was performed and the subsurface is split into 7 prisms and the depth and height of each is to be estimated separately. As a result of this inversion we can estimate that the ceiling of the cistern is located about 1 m under the cloister pavement and the cistern floor at a depth of 4 m. The cistern is slightly inclined towards one of its edges by about 20 cm.Finally, the 2D modelling derived by microgravimetric data has allowed us to determinate the shape, dimensions and location of the cistern accurately. In addition we have calculated the cistern capacity (288 m3, that is, 2880 Hl). This capacity was quite enough for the water necessities of 13 monks who lived there permanently, even for making it through the drought periods frequent in this kind of Mediterranean areas.  相似文献   

7.
The brown carpet beetle Attagenus smirnovi, Zhantiev 1973 (Coleoptera: Dermestidae) is an important pest of objects of organic origin in museums of cultural and natural history in Europe. Future climate changes are expected to lead to increasing temperatures, which will affect the pest status of this species. In the present study a laboratory investigation was conducted to elucidate the effect of temperature and humidity on the amounts of organic material consumed by larvae of A. smirnovi. In the case of new and old skin, consumption was approximately twice as high at 28 °C compared to 20 °C. Wool was consumed in the greatest amounts: 169 mg of wool was consumed in three months by 30 A. smirnovi larvae. The expected future climate changes in Scandinavia are assumed to lead to higher temperatures in museums and stores where climate is not regulated. Updated data on the present distribution of A. smirnovi in Europe show that it is widespread and common, also in regions with a climate that does not support its survival out of doors. Thus, dispersal of this pest probably only rarely occurs by flight, but usually with human activity. Due to the widespread distribution of A. smirnovi, it is likely that damages in museums and collections in Scandinavia due to this pest will increase as climate changes come into effect.  相似文献   

8.
Leaves of common deciduous trees: the horse chestnut (Aesculus hippocastanum) and linden (Tilia spp.) from the park, near one of the most important cultural institutions, the National Library of Serbia, were studied as bioaccumulators of heavy metal (Cr, Fe, Ni, Zn, Pb, Cu, V, As and Cd) air pollution. The leaf samples were collected from the urban park exposed to the exhaust of heavy traffic. The May–September heavy metal accumulation in the leaves, and their temporal trends, were assayed in a multi-year period (2002–2006). Comparing the obtained concentration of the investigated elements from the beginning to the end of growing seasons, a significant rate of accumulation was determined for a majority of measured elements, and it was concluded that these tree species (horse chestnut and linden) can be used as bioaccumulators of the investigated heavy metals. The SEM-EDAX analysis of individual particles deposited on the leaves showed that the 50–60% belong to a class of fine particles (D < 2 μm), mainly of anthropogenic origin. Thus, the investigated tree species could be grown as a natural barrier against urban air pollution in the vicinity of libraries, museums and other buildings for cultural heritage storage.  相似文献   

9.
Solid-phase microextraction (SPME)–gas chromatography (GC)–mass spectrometry (MS) has been applied to the analysis of acetic acid and furfural that are emitted from the fibres of Phormium tenax (Xanthorrhoeaceae) [New Zealand flax] during degradation. Accelerated hydrothermal ageing of fibres of the Ruawai cultivar of P. tenax for 55 days at 70 °C resulted in the production of acetic acid at a level greater or equal to 1.65 mg g–1 fibre. This corresponds to only 8.5% of the acetyl groups present in the fibres. These groups are an important source of acetic acid, which is capable of damaging the fibres. The rate of production of acetic acid suggests that a heritage object made from the fibres of P. tenax, that was stored in damp ambient conditions, would undergo significant deterioration after a relatively short period. Other volatile products released during ageing included furfural, a series of short to medium chain aliphatic aldehydes that were derived from the oxidation of long chain unsaturated fatty acids on the fibres and a small group of products that were derived from carotenoids. The levels of furfural were determined to be approximately 0.75% of the potential production but at these levels, furfural could contribute to unpleasant odours from unventilated items. Fibres from six cultivars of P. tenax were found to release acetic acid and furfural all at the same rate. The levels of acetic acid that can be generated from these fibres are sufficiently high that low moisture levels and continuous change of air is required to minimize degradation of cultural objects that are made from these fibres and displayed in museum halls.  相似文献   

10.
The use of the artificial calcium oxalate treatment providing a protective patina to marble sculptures and a mural façade has been investigated. The longevity of the protective method is controlled at a distance of 3–4 years from its application on two diversely externally exposed Florentine monuments. Micro samples were analysed by optical microscopy (OM), scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) and MicroRaman spectroscopy to characterize products of deterioration and the efficacy of the applied treatment.Decay is predominately noted at a superficial level and in all cases the calcium oxalate is still present, thus the protective action of the treatment is confirmed and moreover, a consolidant effect is also considered. Both statues present fractures and cavities filled with calcium oxalate residues and various degradation products such as gypsum, lichens and pollution particles. This study contributes to ascertain that artificial calcium oxalate prevents further decay of carbonate materials in urban polluted environments.  相似文献   

11.
The paper presents the use of laser radiation for cleaning of beeswax treated granite stone. In the early sixties, prestigious restorers decided to apply molten beeswax on the granite surface of valuable monuments with the aim of preventing the erosive action of atmospheric agents. An interesting example of this treatment is the Renaissance Frieze in the Cloister of the Cathedral of Santiago de Compostela in Galicia (Northwest Spain). With time, salt accumulation beneath the beeswax layer has caused an intense surface disintegration of granite. Conventional cleaning methods can destroy sculptured details of these emblematic monuments. For this reason, excimer laser cleaning has been chosen as a promising non contact, selective and environmentally friendly cleaning technique to be studied.The cleaning tests have been carried out using an excimer laser (ArF, 193 nm), with fluences between 0.5 and 2 J cm−2 pulse−1 and a spot area of 0.025 cm2. Samples representing beeswax films over Roan granite have been irradiated and their degree of cleaning has been studied as a function of the number of pulses and the laser fluence.Cleaning efficiency has been evaluated by FT-Raman Spectroscopy, allowing to establish the beeswax ablation threshold and the ablation rate.Excimer laser cleaning allows a progressive and controlled removal of a few tenths of micrometers of beeswax per pulse without damaging the underlying granite stone.  相似文献   

12.
13.
Accurate three-dimensional representations of cultural heritage sites are highly valuable for scientific study, conservation, and educational purposes. In addition to their use for archival purposes, 3D models enable efficient and precise measurement of relevant natural and architectural features. Many cultural heritage sites are large and complex, consisting of multiple structures spatially distributed over tens of thousands of square metres. The process of effectively digitising such geometrically complex locations requires measurements to be acquired from a variety of viewpoints. While several technologies exist for capturing the 3D structure of objects and environments, none are ideally suited to complex, large-scale sites, mainly due to their limited coverage or acquisition efficiency. We explore the use of a recently developed handheld mobile mapping system called Zebedee in cultural heritage applications. The Zebedee system is capable of efficiently mapping an environment in three dimensions by continually acquiring data as an operator holding the device traverses through the site. The system was deployed at the former Peel Island Lazaret, a culturally significant site in Queensland, Australia, consisting of dozens of buildings of various sizes spread across an area of approximately 400 × 250 m. With the Zebedee system, the site was scanned in half a day, and a detailed 3D point cloud model (with over 520 million points) was generated from the 3.6 hours of acquired data in 2.6 hours. We present results demonstrating that Zebedee was able to accurately capture both site context and building detail comparable in accuracy to manual measurement techniques, and at a greatly increased level of efficiency and scope. The scan allowed us to record derelict buildings that previously could not be measured because of the scale and complexity of the site. The resulting 3D model captures both interior and exterior features of buildings, including structure, materials, and the contents of rooms.  相似文献   

14.
The study refers to the visual representation of the coastal front of the historical center of Thessaloniki in northern Greece and its changes that have occurred through the years. Most of the old town was destroyed by fire on August 18, 1917. A few years later, the French architect and archeologist Ernest Hébrard proposed the reconstruction of the city centre, but his plans were never fully implemented. Since then, a series of interventions changed the form of the old town and consequently the coastal cityscape. The research was initially based on the photogrammetric processing of archive aerial images (1938) of Thessaloniki's city centre. Besides the vertical images, high oblique aerial images dated back to 1932, proved to be a significant source of information. A rich archive of old photographic material, sketches, drawings and gravures of the coastal forehead of the city was also used. Ortho-images of the coastal front, derived from laser scanning (2010), and a 3D model of the historical city center, derived from the stereo photogrammetric process of aerial images (1990), contributed decisively at the multi temporal study of the city front. The main outcomes of the present documentation study are the 3D representation (at scale of 1:200, accuracy 5 cm) of temporal changes of a part of the coastal front of the historical center of Thessaloniki and the 2D representation (at scale 1:100, accuracy 1–2 cm) of these changes with respect to variations on skyline, lacunas, interventions in old buildings, etc.  相似文献   

15.
This work reports mainly the results of an X-ray Absorption Spectroscopy (XAS) study carried out on coloured glass tesserae from the palaeo-Christian mosaic which decorated the votive chapel of St. Prosdocimus (Padova) until its replacement with the current frescoes of Renaissance age, and which is one of the only two known mosaics in the Veneto region (Italy). The study aims at clarifying how the different local structure, oxidation state and quantity of copper influenced colour. Analysis of high-resolution Cu-K edge X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) spectra showed that copper is present as cuprite (Cu2O) in orange samples and as metallic copper in red and brown ones. These phases are responsible for both the colour and opacity of the samples. In addition, Cu1+ ions linked to the oxygen atoms of the glass framework were identified in ratios of about 60% and 30% of total copper in orange and red/brown samples, respectively. In blue and green samples, copper is dispersed in the glass matrix as a mixture of Cu1+ and Cu2+ ions, and no crystalline phases are visible. In this context, the Cu1+ and Cu2+ contents in glass were also quantified thanks to suitable standards, demonstrating that, when Cu2+ is the main chromophorous ion, colour intensity is directly correlated to its content in the glass. In particular, in green and blue samples, coloured by copper, Cu2+ content varies from 26% to 56% of total copper, and the higher contents of Cu2+ are shown by more intensely coloured samples. It should be stressed here that the green colour of the analysed tesserae is given by the physical interaction of blue colour, due to Cu2+ ions, and yellow colour, due to Pb antimonates used as opacifiers.  相似文献   

16.
This study is aimed at an assessment of the properties of two polymeric products applied to Norway spruce (Picea abies) and White poplar (Populus alba) wood species. It contributes to ongoing research experiments on the consolidating properties of two synthetic resins and their potential synergic action on wood, resulting from their different interaction with the substrate: Paraloid B72 and Regalrez 1126. Experiments were carried out on a series of samples of the two wood varieties. The consolidants were applied alone and one after the other, with one coat of Regalrez and then one of Paraloid. Porosity and variations in pore size distribution were ascertained by mercury intrusion porosimetry (MIP). Colorimetric and IR spectroscopic measurements were also taken before and after aging by solar radiation and freeze/thaw cycles, to verify the possible slowing of photodegradation of the treated wood and the consolidating resistance. Results confirm that both products penetrate the wood with a different behaviour. After double treatment with Regalrez + Paraloid, a significant advantage was observed in terms of mechanical resistance and pore size distribution, although no advantages as regards resistance to photo-oxidizing processes or colour changes were observed.  相似文献   

17.
The paper presents our results concerning a complex investigation by reflectance spectroscopy (RS) and Electron Paramagnetic Resonance (EPR) of the defects induced by gamma irradiation in 22 different historical pigments. Gamma irradiation is used to destroy microflora and insects which are involved in biodeterioration processes of art works such as paintings. At the same time, it can induce defects i.e. color centers which are likely to modify the original painting colors by altering the embedded pigments. Accordingly, RS was used to quantify, by means of CIELAB color space, the contribution of irradiation defects to the pigments color changes, while EPR spectroscopy, in view of paramagnetic properties of color centers, was used to confirm their presence after irradiation. Our investigations showed that, excepting marble dust whose color alteration was still observable after 3 months, color changes induced by irradiation in all other pigments disappeared after about 30–40 days. In addition, RS as well as EPR measurements suggest that color changes are related to irradiation color centers, this finding being confirmed by the coincidence, within experimental uncertainties, of the half-life time color changes as obtained by these methods.  相似文献   

18.
3D reconstructions of small objects are more and more frequently employed in several disciplines such as medicine, archaeology, restoration of cultural heritage, forensics, etc. The capability of performing accurate analyses directly on a three-dimensional surface allows for a significant improvement in the accuracy of the measurements, which are otherwise performed on 2D images acquired through a microscope. In this work we present a new methodology for the 3D reconstruction of small sized objects based on a multi-view passive stereo technique applied on a sequence of macro images. The resolving power of macro lenses makes them ideal for photogrammetric applications, but the very small depth of field is their biggest limit. Our approach solves this issue by using an image fusion algorithm to extend the depth of field of the images used in the photogrammetric process. The paper aims to overcome the problems related to the use of macro lenses in photogrammetry, showing how it is possible to retrieve the camera calibration parameters of the sharp images by using an open source Structure from Motion software. Our approach has been tested on two case studies, on objects with a bounding box diagonal ranging from 13.5 mm to 41 mm. The accuracy analysis, performed on certified gauge blocks, demonstrates that the experimental setup returns a 3D model with an accuracy that can reach the 0.05% of the bounding box diagonal.  相似文献   

19.
Xuan paper is a type of Chinese handmade paper produced for traditional calligraphy and painting in China since the Tang Dynasty (618–907 AD), and is therefore an important cultural heritage material. In this study, the fluorescence and photochemical properties of Xuan paper were investigated. Xuan paper exhibits auto-fluorescence in the blue spectral range (450–500 nm) and UVA photolysis of the paper resulted in a substantial reduction in the blue fluorescence together with the formation of chromophores absorbing in the visible spectrum, resulting in photoyellowing of the paper. A more significant yellowing of paper was observed when irradiated in the dry state than under wet conditions. The associated photogeneration of hydrogen peroxide and superoxide from three types of Xuan paper samples during irradiation showed a correlation between the yields of reactive oxygen species and their relative yellowing rates. The results are interpreted in terms of sensitised photooxidation via a mechanism of electron transfer involving the fluorophores in their excited singlet states being responsible for the photodegradation of Xuan paper. SEM/EDS analyses were performed on the Xuan paper samples to investigate their morphological and elemental characteristics. Silica-containing fibres characteristic of a special rice straw that grows in siliceous soil were observed in all types of Xuan paper. Micron-sized calcium precipitates possibly formed from the “lime-steaming” manufacture process were shown to protect against the acidification of paper during accelerated thermal ageing.  相似文献   

20.
A broad category of cultural heritage objects are multilayer structures composed of organic, humidity-sensitive materials – wood, animal glue, paper, leather, bone or paints. They respond to variations in relative humidity (RH) in their environment by cyclically gaining and losing moisture, and consequently swelling and shrinking. Differences in the moisture response of the materials induce internal stresses in the individual layers of the structures, which cause objects to deform and crack. Polychrome wood is examined in detail. The cumulative physical damage of the design layer on wood due to repeated RH variations is quantified in terms of their magnitude and number of times they occur. The climatological risk index for accumulated, ‘fatigue’ damage is established, using a procedure to reduce irregular real-world climate histories into simple RH cycles of known damage impact. Using output from the Hadley Model (HadCM3) and simple transfer functions predicting indoor temperature and RH from outdoor climate, changes in the indoor climate through to 2100 were forecast for unheated buildings. European maps highlighting the areas in which painted wood may be significantly affected by climate change are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号