首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper studies the sampled outputs-based adaptive fault-tolerant control problem for a class of strict-feedback uncertain nonlinear systems, where the nonlinear functions are allowed to include the unmeasured system states. Within the framework, a sampled output observer is introduced to jointly estimate the system states and parameters. By combining the estimated states and the supervisory switching strategy, an adaptive fault-tolerant controller is designed to achieve the desirable tracking performance. By using Lyapunov stability theory, it is proved that all the signals of the closed-loop systems are bounded and the tracking error converges to an adjustable neighbourhood of the origin eventually both in the fault free and faulty cases. Especially, if the outputs are available all the time, the proposed output feedback fault-tolerant control method can ensure the tracking error satisfy the prescribed performance bounds regardless of the faults. Finally, two examples are used to illustrate the effectiveness of the proposed method.  相似文献   

2.
This paper studies the fault-tolerant control (FTC) problem of a class of strict-feedback nonlinear systems. First, we put forward a key theorem which shows that type-B Nussbaum functions can be extended to the cases containing multiple Nussbaum functions in the same Lyapunov inequality under certain conditions. Then, by using the techniques of Nussbaum functions and adaptive control, a new fault-tolerant control scheme is proposed. Compared with the previous work, this paper considers unknown time-varying control coefficients and unknown time-varying fault coefficients of actuators. It is proved that all the signals of the closed-loop system are globally bounded and the tracking error converges to zero asymptotically. Finally, simulations are provided to verify the effectiveness of the proposed control scheme.  相似文献   

3.
In this paper, a novel tracking control scheme for continuous-time nonlinear affine systems with actuator faults is proposed by using a policy iteration (PI) based adaptive control algorithm. According to the controlled system and desired reference trajectory, a novel augmented tracking system is constructed and the tracking control problem is converted to the stabilizing issue of the corresponding error dynamic system. PI algorithm, generally used in optimal control and intelligence technique fields, is an important reinforcement learning method to solve the performance function by critic neural network (NN) approximation, which satisfies the Lyapunov equation. For the augmented tracking error system with actuator faults, an online PI based fault-tolerant control law is proposed, where a new tuning law of the adaptive parameter is designed to tolerate four common kinds of actuator faults. The stability of the tracking error dynamic with actuator faults is guaranteed by using Lyapunov theory, and the tracking errors satisfy uniformly bounded as the adaptive parameters get converged. Finally, the designed fault-tolerant feedback control algorithm for nonlinear tracking system with actuator faults is applied in two cases to track the desired reference trajectory, and the simulation results demonstrate the effectiveness and applicability of the proposed method.  相似文献   

4.
This paper studies the adaptive fuzzy fault-tolerant control design problem for a class of stochastic multi-input and multi-output (MIMO) nonlinear systems in pure-feedback form. The nonlinear systems under study contain unknown functions, unmeasured states and actuator faults, which are described by the loss of effectiveness and lock-in-place modes. With the help of fuzzy logic systems identifying uncertain stochastic nonlinear systems, a fuzzy state observer is established for estimating the unmeasured states. Based on the backstepping design technique with the nonlinear tolerant-fault control theory, an adaptive fuzzy output feedback faults-tolerant control approach is developed. It is proved that the proposed fault-tolerant control approach can guarantee that all the signals of the resulting closed-loop system are bounded in probability. Moreover, the observer errors and tracking errors can be regulated to a small neighborhood of the origin by choosing design parameters appropriately. A simulation example is provided to show the effectiveness of the proposed approach.  相似文献   

5.
A performance-guaranteed fault-tolerant controller is proposed for air-breathing hypersonic vehicles (AHVs) with synthetical consideration on time-varying uncertain parameters and inlet un-start condition. Different from most of the existing strategies for AHVs, the possible time-varying uncertain parameters in the control-oriented model are accommodated, which makes the resulting controller more adaptable to a real flight. Moreover, the velocity-dependent constraint on angle-of-attack, which is an important factor keeping the scramjet away from inlet un-start, is taken into account. With the utilization of barrier functions in adaptive design, velocity and altitude tracking errors are bounded by specific performance functions. Relevant analysis shows that the tracking performance can be further improved by proper adjustments on design parameters. The effectiveness of our proposed controller is evaluated through a simulation study.  相似文献   

6.
This paper proposes an adaptive approximation design for the decentralized fault-tolerant control for a class of nonlinear large-scale systems with unknown multiple time-delayed interaction faults. The magnitude and occurrence time of the multiple faults are unknown. The function approximation technique using neural networks is employed to adaptively compensate for the unknown time-delayed nonlinear effects and changes in model dynamics due to the faults. A decentralized memoryless adaptive fault-tolerant (AFT) control system is designed with prescribed performance bounds. Therefore, the proposed controller guarantees the transient performance of tracking errors at the moments when unexpected changes of system dynamics occur. The weights for neural networks and the bounds of residual approximation errors are estimated by using adaptive laws derived from the Lyapunov stability theorem. It is also proved that all tracking errors are preserved within the prescribed performance bounds. A simulation example is provided to illustrate the effectiveness of the proposed AFT control scheme.  相似文献   

7.
This paper studies the adaptive tracking control problem for a class of uncertain high-order fully actuated (HOFA) systems with actuator faults and full-state constraints. Firstly, we design a novel nonlinear transformation function (NTF) only related to state and constraint boundaries and capable of handling asymmetric time-varying constraints. With the designed function, we obtain an equivalent totally unconstrained HOFA model which is generally simpler to design controllers than first-order state-space model. Then, the adaptive fault-tolerant controller is constructed with the help of the HOFA approach. By applying the Lyapunov stability theory, it is rigorously proved that the output tracking error converges to zero asymptotically, other signals of the resulting closed-loop systems are bounded, and full-state constraints are not violated for all time. Finally, the simulation results verify the efficiency of the proposed control design method.  相似文献   

8.
This paper addresses the problem of leader-follower consensus fault-tolerant control for a class of nonlinear multi-agent systems with output constraints. Specifically, a new nonlinear state transformation function is proposed to deal with the asymmetric constraint on output. Moreover, by integrating backstepping and radial basis function neural network approaches, an adaptive consensus control framework is developed with a single parameter estimator, which mitigates the computation of control algorithm in comparison with conventional adaptive approximation based control techniques. Then an adaptive compensation method is proposed to eliminate the effect of actuator failure. Under the proposed control scheme, all the closed-loop signals of the systems are bounded and the consensus tracking error converges to an adjustable small neighborhood of zero. To evaluate the developed control algorithm, a group of four networked two-stage chemical reactors is used to illustrate the effectiveness of the theoretic results obtained.  相似文献   

9.
This paper studies the cooperative fault-tolerant formation control problem of tracking a dynamic leader for heterogeneous multiagent systems consisting of multipile unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) with actuator faults under switching directed interaction topologies. Based on local neighborhood formation information, the distributed fault-tolerant formation controllers are constructed to ensure that all follower UAVs and UGVs can accomplish the demanding formation configuration in the state space and track the dynamic leader’s trajectory. By incorporating the sliding mode control and adaptive control technique, the actuator faults and unknown parameters of follower agents can be compensated. Through the theoretical analysis, it is proved that the cooperatively semiglobally uniformly ultimately boundedness of the closed-loop system is guaranteed, and the formation tracking errors converge to a small adjustable neighborhood of the origin. A simulation example is introduced to show the validity of the proposed distributed fault-tolerant formation control algorithm.  相似文献   

10.
This paper studies a finite-time adaptive fuzzy control approach for a continuous stirred tank reactor (CSTR) with percent conversion constraint and uncertainties. This system is seen as a class of non-affine systems, and the system is resolved by the mean value theorem. Integral barrier Lyapunov functions (iBLFs) are used to handle output constraint in the design process of the finite-time adaptive controller. In order to calculate the time derivative of the virtual controller, a finite-time convergent differentiator (FTCD) is proposed, which can avert the issue of “explosion of complexity” in the backstepping design. Based on the finite time stability theory, the proposed approach not only ensures the closed-loop stability, but also guarantees tracking performance in a finite time. Finally, the simulation results on CSTR are showed to reveal the availability of the developed control scheme.  相似文献   

11.
This paper investigates the adaptive fuzzy output feedback fault-tolerant tracking control problem for a class of switched uncertain nonlinear systems with unknown sensor faults. In this paper, since the sensor may suffer from an unknown constant loss scaling failure, only actual output can be used for feedback design. A failure factor is employed to represent the loss of effectiveness faults. Then, an adaptive estimation coefficient is introduced to estimate the failure factor, and a state observer based on the actual output is constructed to estimate the system states. Fuzzy logic systems are used to approximate the unknown nonlinear functions. Based on the Lyapunov function method and the backstepping technique, the proposed control scheme with average dwell time constraints can guarantee that all states of the closed-loop system are bounded and the tracking error can converge to a small neighborhood of zero. Finally, two simulation examples are given to illustrate the effectiveness of the proposed scheme.  相似文献   

12.
In this paper, the problem of adaptive fuzzy fault-tolerant control is investigated for a class of switched uncertain pure-feedback nonlinear systems under arbitrary switching. The considered actuator failures are modeled as both lock-in-place and loss of effectiveness. By utilizing mean value theorem, the considered pure-feedback systems are transformed into a class of switched nonlinear strict-feedback systems. Under the framework of backstepping design technique and common Lyapunov function (CLF), an adaptive fuzzy fault-tolerant control (FTC) method with predefined performance bounds is developed. It is proved that under the proposed controller, all the signals of the close-loop systems are bounded and the state tracking error for each step remains within the prescribed performance bound (PPB) regardless of actuator faults and the system switchings. In addition, the tracking errors and magnitudes of control inputs can be reduced by adjusting the PPB parameters of errors in the first and last steps. The simulation results are provided to show the effectiveness of the proposed control scheme.  相似文献   

13.
This paper is concerned with the adaptive control problem of a class of output feedback nonlinear systems with unmodeled dynamics and output constraint. Two dynamic surface control design approaches based on integral barrier Lyapunov function are proposed to design controller ensuring both desired tracking performance and constraint satisfaction. The radial basis function neural networks are utilized to approximate unknown nonlinear continuous functions. K-filters and dynamic signal are introduced to estimate the unmeasured states and deal with the dynamic uncertainties, respectively. By theoretical analysis, the closed-loop control system is proved to be semi-globally uniformly ultimately bounded, while the output constraint is never violated. Simulation results demonstrate the effectiveness of the proposed approaches.  相似文献   

14.
This paper is concerned with the image-based visual servoing (IBVS) control for uncalibrated camera-robot system with unknown dead-zone constraint, where the uncertain kinematics and dynamics are also considered. The control implementation is achieved by constructing a smooth inverse model for dead-zone-input to eliminate the nonlinear effect resulting from the actuator constraint. A novel adaptive algorithm, which does not require a priori knowledge of the parameter intervals of dead-zone model, is proposed to update the parameter values online, and the dead-zone slopes are not required the same. Furthermore, to accommodate the uncertainties of uncalibrated camera-robot system, adaptation laws are developed to estimate the uncertain parameters, simultaneously avoiding singularity of the image Jacobian matrix. With the full consideration of unknown dead-zone constraint and system uncertainties, an adaptive robust visual tracking control scheme together with dead-zone compensation is subsequently established such that the image tracking error converges to the origin. Based on a 3-DOF manipulator, simulations are conducted to verify the tracking performance of the proposed controller.  相似文献   

15.
《Journal of The Franklin Institute》2022,359(18):10525-10557
This paper is concerned with an event-triggered adaptive fault-tolerant problem for an uncertain non-affine system. The implicit function theorem and mean value theorem are utilized to transform a non-affine system into an affine one, and an extended state observer and a tracking differentiator are used to estimate unknown dynamics and the derivative of virtual control laws, respectively. Adaptive laws are designed for unknown faults, and an event-triggered control scheme with a time-varying threshold, based on a tracking error and adaptive parameters, is developed. The tracking error is steered to converge to a bounded set with the help of a predefined performance function, and its transient performance is improved despite of faults. The stability of the closed-loop system is analyzed by the theorem of the input-to-state practically stability, and the Zeno behavior is excluded. Finally, two examples are given to illustrate the effectiveness of the proposed scheme.  相似文献   

16.
In this paper, a novel event-triggered adaptive fault-tolerant control scheme is proposed for a class of nonlinear systems with unknown actuator faults. Multiplicative faults and additive faults are taken into account simultaneously, both of which may vary with time. Different from existing results, our controller fuses static reliability information and dynamic online information, which is helpful to enhance the fault-tolerant capability. With the aid of an event-triggering mechanism, an actuator switching strategy and a bound estimation approach, the communication burden is significantly reduced and the impacts of the actuator faults as well as the network-induced error are effectively compensated for. Moreover, by employing the prescribed performance control technique, the system tracking error can converge to a predefined arbitrarily small residual set with prescribed convergence rate and maximum overshoot, which implies that the proposed scheme is able to ensure rapid and accurate tracking. Simulation results are presented to illustrate the effectiveness of the proposed scheme.  相似文献   

17.
In this paper, an integrated design of data-driven fault-tolerant tracking control is addressed relying on the Markov parameters sequence identification and adaptive dynamic programming techniques. For the unknown model systems, the sequence of Markov parameters together with the covariance of innovation signal is firstly estimated by least square method. After a transformation of value function from stochastic to deterministic, a policy iteration adaptive dynamic programming algorithm is then formulated to find the optimal tracking control law. In order to eliminate the influence of unpredicted faults, an active fault-tolerant supervisory control strategy is further constructed by synthesizing fault detection, isolation, estimation and compensation. All these involved designs are performed in the data-driven manner, and thus avoid the information requirement about system drift dynamics. From the perspective of system operation management, the above integrated control scheme provides a framework to achieve the tracking performance optimization, monitoring and maintaining simultaneously. The effectiveness of these conclusions is finally verified via two case studies.  相似文献   

18.
This study carries out the problem of adaptive backstepping fuzzy tracking control for a class of full state constrained uncertain nonlinear system with unknown control directions. Based on Nussbaum-type functions and tan-type Barrier Lyapunov functions, a novel adaptive fuzzy tracking controller is proposed to guarantee that the system output tracking error asymptotically converges to zero, while the constraints on the states of system will not be violated during operation. Compared with the existing results, a better convergence effect is obtained for this class of systems. Stability analysis of the proposed closed-loop control system is supported by the Lyapunov stability theory. Finally, a simulation example is presented to illustrate the effectiveness of the proposed control strategy.  相似文献   

19.
This paper is devoted to the fault-tolerant tracking control for a class of uncertain robotic systems under time-varying output constraints. Notably, both actuator fault and the disturbances are present while all the dynamic matrices are not necessarily to be parameterized by unknown parameters or have known nominal parts, and moreover, the reference trajectories as well as the output constraints functions are not necessarily twice continuously differentiable without any time derivatives of them being available for feedback. These remarkable characteristics greatly relax the corresponding assumptions of the related literature and in turn to bring the ineffectiveness of the traditional schemes on this topic. For this, a powerful adaptive control methodology is established by incorporating adaptive dynamic compensation technique into the backstepping framework based on Barrier Lyapunov functions. Then, an adaptive state feedback controller with the smart choices of adaptive law and virtual controls is designed which guarantees that all the states of the closed-loop system are bounded and the system output practically tracks the reference trajectory while not violates the output constraints.  相似文献   

20.
This paper studies the distributed fault-tolerant control (FTC) problem for heterogeneous nonlinear multi-agent systems (MASs) under sampled intermittent communications. First, in order to estimate the state of leader under sampled intermittent communications, the distributed intermittent observer for each follower is constructed. By using the tool from switching system theory, the estimation error converges to zero exponentially if the communication rate is larger than a threshold value even under the impact of sampled intermittent communications. Then, by applying model reference adaptive tracking technique, a robust FTC protocol is developed to track the distributed intermittent observer. Two algorithms are presented to choose the feedback gain of the distributed intermittent observer and the tracking feedback gain of the fault-tolerant tracking controller. It is proved that the global consensus tracking error is bounded under the developed distributed control protocol. Finally, an example with the coupled pendulums is provided to verify the efficiency of the designed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号