首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The current paper addresses the fuzzy adaptive tracking control via output feedback for single-input single-output (SISO) nonlinear systems in strict-feedback form. Under the situation of system states being unavailable, the system output is used to set up the state observer to estimate the real system states. Furthermore, the estimation states are employed to design controller. During the control design process, fuzzy logic systems (FLSs) are used to model the unknown nonlinearities. A novel observer-based finite-time tracking control scheme is proposed via fuzzy adaptive backstepping and barrier Lyapunov function approach. The suggested fuzzy adaptive output feedback controller can force the output tracking error to meet the pre-specified accuracy in a fixed time. Meanwhile, all the closed-loop variables are bounded. Compared to some existing finite-time output feedback control schemes, the developed control strategy guarantees that the settling time and the error accuracy are independent of the uncertainties and can be specified by the designer. At last, the effectiveness and feasibility of the proposed control scheme are demonstrated by two simulation examples.  相似文献   

2.
This paper presents a simplified design methodology for robust event-driven tracking control of uncertain nonlinear pure-feedback systems with input quantization. All nonlinearities and quantization parameters are assumed to be completely unknown. Different from the existing event-driven control approaches for systems with completely unknown nonlinearities, the main contribution of this paper is to design a simple event-based tracking scheme with preassigned performance, without the use of adaptive function approximators and adaptive mirror models. It is shown in the Lyapunov sense that the proposed event-driven low-complexity tracker consisting of nonlinearly transformed error surfaces and a triggering condition can achieve the preselected transient and steady-state performance of control errors in the presence of the input quantization.  相似文献   

3.
《Journal of The Franklin Institute》2022,359(18):10355-10391
In this paper, an adaptive neural finite-time tracking control is studied for a category of stochastic nonlinearly parameterized systems with multiple unknown control directions, time-varying input delay, and time-varying state delay. To this end, a novel criterion of semi-globally finite-time stability in probability (SGFSP) is proposed, in the sense of Lyapunov, for stochastic nonlinear systems with multiple unknown control directions. Secondly, a novel auxiliary system with finite-time convergence is presented to cope with the time-varying input delay, the appropriate Lyapunov Krasovskii functionals are utilized to compensate for the time-varying state delay, Nussbaum functions are exploited to identify multiple unknown control directions, and the neural networks (NNs) are applied to approximate the unknown functions of nonlinear parameters. Thirdly, the fraction dynamic surface control (FDSC) technique is embedded in the process of designing the controller, which not only the “explosion of complexity” problems are successfully avoided in traditional backstepping methods but also the command filter convergence can be obtained within a finite time to lead greatly improved for the response speed of command filter. Meanwhile, the error compensation mechanism is established to eliminate the errors of the command filter. Then, based on the proposed novel criterion, all closed-loop signals of the considered systems are SGPFS under the designed controller, and the tracking error can drive to a small neighborhood of the origin in a finite time. In the end, three simulation examples are applied to demonstrate the validity of the control method.  相似文献   

4.
In this paper, the problem of adaptive tracking control is investigated for nonlinear systems with asymmetric actuator backlash. We assume that the nonlinearities of the systems are unknown and the external disturbances are bounded. First, the control input will be quantized by a hysteresis-type quantizer, which can reduce the communication rate of the control signal. Then, the asymmetric actuator backlash is approximated to a new model, and a novel adaptive controller with the quantizer is designed via an adaptive backstepping technique to guarantee all the signals of the closed-loop tracking error system are uniform ultimate boundedness. Finally, the simulation results are presented to demonstrate the effectiveness of the proposed algorithm.  相似文献   

5.
In this article, an adaptive fuzzy control method is proposed for induction motors (IMs) drive systems with unknown backlash-like hysteresis. First, the stochastic nonlinear functions existed in the IMs drive systems are resolved by invoking fuzzy logic systems. Then, a finite-time command filter technique is exploited to overcome the obstacle of “explosion of complexity” emerged in the classical backstepping procedure during the controller design process. Meanwhile, the effect of the filter errors generated by command filters is decreased by utilizing corresponding error compensating mechanism. To cope with the influence of backlash-like hysteresis input, an auxiliary system is constructed, in which the output signal is applied to compensate the effect of the hysteresis. The finite-time control technology is adopted to accelerate the response speed of the system and reduce the tracking error, and the stochastic disturbance and backlash-like hysteresis are considered to improve control accuracy. It’s shown that the tracking error can converge to a small neighborhood around the origin in finite-time under the constructed controller. Finally, the availability of the presented approach is validated through simulation results.  相似文献   

6.
This paper investigates adaptive finite-time practical consensus protocols for a class of second-order multiagent systems with a positive odd power, nonsymmetric input dead zone and uncertain dynamics under a directed communication topology. In this study, three major steps are employed to address the existence of the positive odd power, nonsymmetric input dead zone and uncertain dynamics. Overall, based on the technique of adding one power integrator, useful preliminary results are obtained by configuring a suitable fraction power. Furthermore, to circumvent input dead-zone nonlinearity, an adaptive fuzzy logic (FL) method is used to estimate the width of the dead zone. Finally, the difficulty in designing finite-time practical consensus protocols for the multiagent systems with uncertain dynamics is handled by using radial basis function neural networks (RBFNNs) to approximate the related unknown nonlinear functions. Then, given some reasonable assumptions, it is shown that finite-time practical consensus of the second-order multiagent systems is obtained by using the proposed distributed control protocols and adaptive laws. In addition, the proper approach for selecting parameters is provided such that the neighborhood position error and parameter estimate errors for each agent converge to predesigned small regions of the origin in a finite time. The effectiveness of the developed algorithm is finally validated through a numerical simulation.  相似文献   

7.
In this paper, an adaptive neural control scheme is proposed for a class of unknown nonlinear systems with unknown sensor hysteresis. The radial basis function neural networks are employed to approximate the unknown nonlinearities and the backstepping technique is implemented to construct controllers. The difficulty of the control design lies in that the genuine states of the system are not available for feedback, which is caused by sensor hysteresis. The proposed control scheme eventually ensures the practical finite-time stability of the closed-loop system, which is proved by the Lyapunov theory. A numerical simulation example is included to verify the effectiveness of the developed approach.  相似文献   

8.
This paper presents an improved adaptive design strategy for neural-network-based event-triggered tracking of uncertain strict-feedback nonlinear systems. An adaptive tracking scheme based on state variables transmitted from the sensor-to-controller channel is designed via only single neural network function approximator, regardless of unknown nonlinearities unmatched in the control input. Contrary to the existing multiple-function-approximators-based event-triggered backstepping control results with multiple triggering conditions dependent on all error surfaces, the proposed scheme only requires one triggering condition using a tracking error and thus can overcome the problem of the existing results that all virtual controllers with multiple function approximators should be computed in the sensor part. This leads to achieve the structural simplicity of the proposed event-triggered tracker in the presence of unmatched and unknown nonlinearities. Using the impulsive system approach and the error transformation technique, it is shown that all the signals of the closed-loop system are bounded and the tracking error is bounded within pre-designable time-varying bounds in the Lyapunov sense.  相似文献   

9.
This paper is concerned with the problem of global finite-time stabilization via output feedback for a class of switched stochastic nonlinear systems whose powers are dependent of the switching signal. The drift and diffusion terms satisfy the lower-triangular homogeneous growth condition. Based on adding a power integrator technique and the homogeneous domination idea, output-feedback controllers of all subsystems are constructed to achieve finite-time stability in probability of the closed-loop system. Distinct from the existing results on switched stochastic nonlinear systems, the delicate change of coordinates are introduced for dominating nonlinearities. Moreover, by incorporating a multiplicative design parameter into the coordinate transformations, the obtained control method can be extended to switched stochastic nonlinear systems with nonlinearities satisfying the upper-triangular homogeneous growth condition. The validity of the proposed control methods is demonstrated through two examples.  相似文献   

10.
A practical finite-time command filtered backstepping control method is proposed in this paper for a microwave plasma chemical vapor deposition (MPCVD) reactor system. The MPCVD reactor system is modeled as a coupled nonlinear system with unknown control direction functions and unknown nonlinearities. To address the unknown nonlinearities, novel practical finite-time command filters are proposed to construct the estimations of such nonlinearities. On the other hand, an equivalent augmented system of the reactor system is proposed to address the design challenges that posed by the system unknown control direction functions. Additionally, it can be concluded that the proposed control method ensures practical finite-time stability of the reactor system tracking errors by using the practical finite-time Lyapunov stability criterion. Finally, the effectiveness of the approach is demonstrated through the simulation results.  相似文献   

11.
The problem of adaptive global finite-time stabilization control for a class of nonlinear switched systems in the presence of external perturbations and arbitrary switchings has been addressed in this research study. The proposed scheme has been designed based on a finite-time estimation technique in which during the control procedure, unknown imposed perturbations are accurately estimated by means of the designed finite-time disturbance observer (FTDO). Due to the exact estimation of the external disturbances within a given finite time, the encountered complications and adversities from loss of information in the Lyapunov parameter estimation (LPE) methods have been solved which are caused by the persistent switchings in the system. Furthermore, a new solution for the problem of chattering phenomenon in nonlinear switched systems has been presented by utilizing the designed FTDO, which can counteract the malfunctioning responses of the system caused by external disturbances and unmodeled dynamics. In this paper, an acknowledged class of nonlinear switched systems has been taken into account which is in the general form of canonical structure. In addition, the established design strategy is formulated for the control of perturbed nonlinear switched systems with one and only input and assures that the system states through the finite-time convergence characteristic, reach the equilibrium point of origin. Finally, numerical simulations are carried out on a mass-spring-damper (MSD) dynamical system to indicate advantages and superior efficiency of the suggested method.  相似文献   

12.
The practical finite-time control problem of uncertain nonlinear systems is investigated in this paper. To address the uncertain nonlinearities of the system, neural networks are introduced to approximate the lumped nonlinearities containing the system unknown functions. On the other hand, to alleviate the signal transmission pressure of the system, an improved event-triggered mechanism is presented to reduce the controller update frequency without degrading the control performance of the system. By using practical finite-time stability, it is obtained that the system tracking errors are practical finite-time stable without Zeno behavior. Finally, the effectiveness of the proposed method is verified by the simulation results of its application to a microwave plasma chemical vapor deposition (MPCVD) reactor system.  相似文献   

13.
A global decentralized low-complexity tracker design methodology is proposed for uncertain interconnected high-order nonlinear systems with unknown high powers. It is assumed that interconnected nonlinearities are bounded by completely unknown nonlinearities, rather than, a linear combination of high-ordered state variables. Compared with the existing decentralized results for interconnected nonlinear systems with known high powers, the decentralized robust controller, which achieves the pre-designable transient and steady-state tracking performance for each subsystem, is designed by employing nonlinear error surfaces with time-varying performance functions, regardless of unknown nonlinear interactions and high powers related to virtual and actual control variables. The proposed decentralized continuous robust low-complexity tracker is realized without the use of any adaptive or function approximation techniques for estimating unknown parameters and nonlinearities. The stability and preassigned tracking performance of the resulting decentralized low-complexity control system are thoroughly analyzed in the Lyapunov sense. Finally, simulation results on coupled underactuated mechanical systems are provided to show the effectiveness of the proposed theoretical result.  相似文献   

14.
This research addresses the problem of finite-time tracking error constrained control for a class of non-strict stochastic nonlinear systems with unknown time-varying powers and multiple power terms. Based on the conversion from constrained tracking error to an unconstrained signal with the same effect, by adopting the backstepping technique together with adaptive neural network control, a controller with upper and lower time-varying power bounds is designed to meet the prescribed performance control scheme in finite-time. Finally, two simulation examples are shown to verify the effectiveness of the commendatory control method.  相似文献   

15.
A robust low-complexity design methodology is presented for global tracking of uncertain high-order nonlinear systems with unknown time-varying delays. In contrast to the existing literature, this paper assumes that nonlinear bounding functions of time-delay nonlinearities and high powers of virtual and actual control variables are unknown. Furthermore, a delay-independent tracking scheme using nonlinearly transformed error surfaces is simply designed without the knowledge of nonlinear bounding functions of model nonlinearities, the adaptive technique, and the calculation of repeated time derivatives of certain signals. Thus, the proposed tracker is implemented with low complexity. It is recursively shown that the tracking error is preserved within the predefined bounds of transient and steady-state performance in the Lyapunov sense.  相似文献   

16.
This paper studies the problem of finite-time formation tracking control for networked nonaffine nonlinear systems with unmeasured dynamics and unknown uncertainties/disturbances under directed topology. A unified distributed control framework is proposed by integrating adaptive backstepping control, dynamic gain control and dynamic surface control based on finite-time theory and consensus theory. Auxiliary dynamics are designed to construct control gains with non-Lipschitz dynamics so as to guarantee finite-time convergence of formation errors. Adaptive control is used to compensate for uncertain control efforts of the transformed systems derived from original nonaffine systems. It is shown that formation tracking is achieved during a finite-time period via the proposed controller, where fractional power terms are only associated with auxiliary dynamics instead of interacted information among the networked nonlinear systems in comparison with most existing finite-time cooperative controllers. Moreover, the continuity of the proposed controller is guaranteed by setting the exponents of fractional powers to an appropriate interval. It is also shown that the improved dynamic surface control method could guarantee finite-time convergence of formation errors, which could not be accomplished by conventional dynamic surface control. Finally, simulation results show the effectiveness of the proposed control scheme.  相似文献   

17.
This paper investigates a finite-time consensus issue for non-affine pure-feedback multi-agent systems with dead-zone input. Compared with the existing results on multi-agent systems, finite-time consensus problem of non-affine multi-agent systems is proposed for the first time. Based on the backsteppting technique, adaptive finite-time consensus control scheme is presented. With the help of this strategy, adaptive virtual variables, adaptive laws and the actual controller are designed to guarantee that the consensus errors converge to a small scale of the origin in finite time. Finally, a practical example is applied to verify the feasibility of the proposed method.  相似文献   

18.
This paper investigates the finite-time stabilization for a class of upper-triangular switched nonlinear systems, where nonlinearities are allowed to be lower-order growing. Due to the special structure of the considered system, the presented methods for lower-triangular switched nonlinear systems in the literature can not be directly utilized. To solve the problem, a state feedback control law with a new structure is designed to guarantee the global finite-time stability of the closed-loop system under arbitrary switching signals by using the recursive design approach and the nested saturation method. A simulation example is provided to show the effectiveness of the proposed method.  相似文献   

19.
This paper develops a robust adaptive neural network (NN) tracking control scheme for a class of strict-feedback nonlinear systems with unknown nonlinearities and unknown external disturbances under input saturation. The radial basis function NNs with minimal learning parameter (MLP) are employed to online approximate the uncertain system dynamics. The adaptive laws are designed to online update the upper bound of the norm of ideal NN weight vectors, and the sum of the bounds of NN approximation errors and external disturbances, respectively. An auxiliary dynamic system is constructed to generate the augmented error signals which are used to modify the adaptive laws for preventing the destructive action due to the input saturation. Moreover, the command filtering backstepping control method is utilized to overcome the shortcoming of dynamic surface control method, the tracking-differentiator-based control method, etc. Our proposed scheme is qualified for simultaneously dealing with the input saturation effect, the heavy computational burden and the “explosion of complexity” problems. Theoretical analysis illuminates that our scheme ensures the boundedness of all signals in the closed-loop systems. Simulation results on two examples verify the effectiveness of our developed control scheme.  相似文献   

20.
This paper is concerned with event-triggered adaptive fuzzy tracking control for high-order stochastic nonlinear systems. The approach of fuzzy logic systems (FLSs) approximation is extended to high-order stochastic nonlinear systems to deal with the unknown nonlinear uncertainties. A novel high-order adaptive fuzzy tracking controller is firstly presented via a backstepping approach and event-triggering mechanism which can mitigate the unnecessary waste of computation and communication resources. Based on the above techniques, frequently-used growth assumptions imposed on unknown system nonlinearities are removed and the influence for the high order is handled. The proposed high-order adaptive fuzzy tracking control method not only deals with the influence of high order, but also ensures that the tracking error converges to a small neighborhood of the origin in probability. Finally, the effectiveness of the proposed control method is illustrated by a numerical example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号