首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is concerned with the event-based fusion estimation problem for a class of multi-rate systems (MRSs) subject to sensor degradations. The MRSs under consideration include several sensor nodes with different sampling rates. To facilitate the filter design, the MRSs are transformed into a single-rate system (SRS) by using an augmentation approach. A set of random variables obeying known probability distributions are used to characterize the phenomenon of the sensor degradations. For the purpose of saving the limited communication resources, the event-triggering mechanism (ETM) is adopted to regulate the transmission frequency of the measurements. For the addressed MRSs, we aim to design a set of event-based local filters for each sensor node such that the upper bound of each local filtering error covariance (FEC) is guaranteed and minimized by designing the filter parameter appropriately. Subsequently, the local estimates are fused with the aid of covariance intersection (CI) fusion approach. Finally, a numerical experiment is exploited to demonstrate the usefulness of the developed fusion estimation algorithm.  相似文献   

2.
In this paper, the distributed fusion filtering issue is investigated for multi-sensor systems with the constraints from both time-correlated fading channels and energy harvesters. A specific scenario is considered where the sensors can harvest energy from the natural environment and may consume a certain amount of energy when transmitting measurements to the filters. In order to properly deal with the energy supply relationship between a battery and multiple sensors, a dynamic energy-allocated rule is proposed in this paper, i.e., the storage battery provides energy to sensors in order of different sensors’ priorities. Additionally, the channel fading phenomenon is also taken into consideration and the fading coefficient is described by a dynamic process. In this paper, we are committed to designing a local filter such that, under the effects of the time-correlated fading channels and energy harvesters, an upper bound on the local filtering error covariance is firstly derived by using the mathematical induction and then the upper bound is minimized by designing the local filter gain. Next, the covariance intersection approach is employed to obtain the fusion estimates. Finally, a simulation is provided to verify that the presented filtering strategy is feasible and effective.  相似文献   

3.
This paper focus on the distributed fusion estimation problem for a multi-sensor nonlinear stochastic system by considering feedback fusion estimation with its variance. For any of the feedback channels, an event-triggered scheduling mechanism is developed to decide whether the fusion estimation is needed to broadcast to local sensors. Then event-triggered unscented Kalman filters are designed to provide local estimations for fusion. Further, a recursive distributed fusion estimation algorithm related with the trigger threshold is proposed, and sufficient conditions are builded for boundedness of the fusion estimation error covariance. Moreover, an ideal compromise between fusion center-to-sensors communication rate and estimation performance is achieved. Finally, validity of the proposed method is confirmed by a numerical simulation.  相似文献   

4.
The performance of the current state estimation will degrade in the existence of slow-varying noise statistics. To solve the aforementioned issues, an improved strong tracking maximum correntropy criterion variational-Bayesian adaptive Kalman filter is presented in this paper. First of all, the inverse-Wishart distribution, as the conjugate-prior, is adopted to model the unknown and time-varying measurement and process noise covariances, then the noise covariances and system state are estimated via the variational Bayesian method. Secondly, the multiple fading-factors are obtained and evaluated to modify the prediction error covariance matrix to address the problems associated with inaccurate error estimation. Finally, the maximum correntropy criterion is employed to correct the filtering gain, which improves the filtering performance of the proposed algorithm. Simulation results show that the proposed filter exhibits better accuracy and convergence performance compared to other existing algorithms.  相似文献   

5.
In this paper, the centralized security-guaranteed filtering problem is studied for linear time-invariant stochastic systems with multirate-sensor fusion under deception attacks. The underlying system includes a number of sensor nodes with a centralized filter, where each sensor is allowed to be sampled at different rate. A new measurement output model is proposed to characterize both the multiple rates and the deception attacks. By exploiting the lifting technique, the multi-rate sensor system is cast into a single-rate discrete-time system. With a new concept of security level, the aim of this paper is to design a filter such that the filtering error dynamics achieves the prescribed level of the security under deception attacks. By using the stochastic analysis techniques, sufficient conditions are first derived such that the filtering error system is guaranteed to have the desired security level, and then the filter gain is parameterized by using the semi-definite programme method with certain nonlinear constraints. Finally, a numerical simulation example is provided to demonstrate the feasibility of the proposed filtering scheme.  相似文献   

6.
This paper focuses on the extended dissipative filter design problem for a class of uncertain semi-Markov jump systems in the discrete-time context, where the parameter uncertainties are assumed to be occurred in a special probabilities way. The aim of this paper is to design a mode-dependent filter ensuring the stochastic stability of the resulting filtering error system. To reduce the burden of communication network, the event-triggered scheme and quantized measurement are employed. By constructing a new Lyapunov functional, the filter design methodology is put forward. Finally, two numerical examples are proposed to demonstrate the usefulness of the filter design methodology.  相似文献   

7.
This paper studies networked H filtering for Takagi–Sugeno fuzzy systems with multi-output multi-sensor asynchronous sampling. Different output variables in a dynamic system are sampled by multiple sensors with different sampling rates. To estimate the signals of such a system, a continuous multi-rate sampled-data fusion method is proposed to design a novel networked filter. By considering a class of decentralized event-triggered transmission schemes, multi-channel network-induced delays, and the updating modes of the MOMR sampled-data, a networked jumping fuzzy filter is proposed to estimate system signals based on the transmitted multi-rate sampled-data of fuzzy system and the multi-rate sampled states of filter, and the jumping among filter modes is governed by a Markov process which depends on the arrival times of sampled output sub-vectors. To deal with asynchronous membership functions, the networked fuzzy filtering system is modeled as an uncertain fuzzy stochastic system with membership function deviation bounds. Based on stability and H performance analysis, several membership-function-dependent conditions are presented to co-design the event-triggered transmission schemes and the fuzzy filter such that the filtering error system is robustly mean-square exponentially stable with a prescribed H attenuation level. Finally, the improvement in estimation performance and comparison with the existing filtering methods are discussed through simulation examples.  相似文献   

8.
The H filtering problem for distributed parameter systems with stochastic switching topology is investigated in this paper based on event-triggered control scheme. The switching topology which subjects to a Markovian chain is considered in filter design because of the communication uncertainty of practical networks. An event-triggered mechanism as a sampling scheme is developed aiming at the benefit of reducing the computation load or saving the limited network resources. Based on some novel integral inequalities, the improved delayed method is proposed for the H filtering control problem with event-triggered scheme. Moreover, by employing stochastic stability theory, filters with Markovian jump parameters are designed to guarantee that the stochastically mean square stability and H performance of the underlying error system. Finally, in order to illustrate the applicability of the obtained results, numerical examples are presented.  相似文献   

9.
In this paper, the state estimation problem is studied for a class of discrete-time stochastic complex networks with switched topology. In the network under consideration, we assume that measurement outputs can be got from only partial nodes, besides, the switching rule of this network is characterized by a sequence of Bernoulli random variables. The aim of the presented estimation problem is to develop a recursive estimator based on the framework of extended Kalman filter (EKF), such that the upper bound for the filtering error convariance is optimized. In order to address the nonlinear functions, the Taylor series expansion is utilized and the high-order terms of linearization errors are expressed in an exact way. Furthermore, by solving two Ricatti-like difference equations, the gain matrix can be acquired at each time instant. It is shown that the filtering error is bounded in mean square under some conditions with the aid of stochastic analysis techniques. A numerical example is given to demonstrate the validity of the proposed estimator.  相似文献   

10.
A new distributed fusion receding horizon filtering problem is investigated for uncertain linear stochastic systems with time-delay sensors. First, we construct a local receding horizon Kalman filter having time delays (LRHKFTDs) in both the system and measurement models. The key technique is the derivation of recursive error cross-covariance equations between LRHKFTDs in order to compute the optimal matrix fusion weights. It is the first time to present distributed fusion receding horizon filter for linear discrete-time systems with delayed sensors. It has a parallel structure that enables processing of multisensory time-delay measurements, so the calculation burden can be reduced and it is more reliable than the centralized version if some sensors turn faulty. Simulations for a multiple time-delays system show the effectiveness of the proposed filter in comparison with centralized receding horizon filter and non-receding versions.  相似文献   

11.
In this paper, the mean-square and mean-module filtering problems for polynomial system states over polynomial observations are studied proceeding from the general expression for the stochastic Ito differentials of the estimate and the error variance. The paper deals with the general case of nonlinear polynomial states and observations. As a result, the Ito differentials for the estimates and error variances corresponding to the stated filtering problems are first derived. The procedure for obtaining an approximate closed-form finite-dimensional system of the sliding mode filtering equations for any polynomial state over observations with any polynomial drift is then established. In the examples, the obtained sliding mode filters are applied to solve the third-order sensor filtering problems for a quadratic state, assuming a conditionally Gaussian initial condition for the extended second-order state vector. The simulation results show that the designed sliding mode filters yield reliable and rapidly converging estimates.  相似文献   

12.
Unpredictable packet loss that occurs in the channel connecting a local sensor and a remote estimator will deteriorate the performance of state estimation. To relieve this detrimental impact, an online linear temporal coding scheme is studied in this paper. If the packet of the last step is lost, a linear combination of the current and the last measurements with proper weights is transmitted; otherwise, only the current data is sent. By virtue of the innovation sequence approach, a linear minimum mean-squared error estimation algorithm is designed. To optimize performance, a novel estimator is also proposed which provides a recursive expression of the error covariances. The proposed two algorithms are proved to be equivalent via a set of transformations. With the aid of some optimization techniques, a recursive algorithm is presented to obtain the optimal coding weight in terms of minimizing the average estimation error covariance.  相似文献   

13.
This paper considers the filtering problem for a class of linear cyber-physical systems (CPSs) subject to the Round-Robin protocol (RRP) scheduling, where the RRP is adopted to efficiently avoid data collisions in multi-sensor application scenarios. Unlike most of the existing results concerning the scheduling effects of the RRP under reliable communication channels, the filtering problem over packet-dropping networks is investigated. In such a framework, an optimal Kalman-type recursive filter is derived in the minimum mean square error (MMSE) sense, which is different from the suboptimal filters with bounded error covariances proposed in the previous results. Due to the protocol-induced behaviors and the unreliability of the channels, the estimator may be unstable. Thus, the stability problem of the filter is mainly discussed. It can be proved that the filter is stable when the arrival rate of the measurements exceeds a certain threshold, where the threshold can be obtained by solving a quasi-convex optimization problem. Furthermore, a sufficient condition for the existence of the steady-state error covariance is presented and can be transferred into the feasibility of a certain linear matrix inequality (LMI). Finally, a simulation example is provided to demonstrate the developed results.  相似文献   

14.
Multi-sensor data fusion over one channel is studied in this paper. The communication constraint considered here is medium access constraint. When the synchronous time division multiplexing (STDM) mechanism is used to address this problem, collective delay emerges. Collective delay time depends upon the channel capacity and traffic flow assigned to the communication channel, causing contradiction between traffic flow and delay time (the number of transmitted sensors and delay steps). A new model is developed that can truly reflect this contradiction by introducing a stochastic process θθ. Based on the obtained system model, the optimal data fusion filter is designed. It also gives the upper bounds of the expected estimation error covariance and estimation error covariance with one-step delay. Two illustrative examples are given in the last section to show the influence of θθ on estimation performance.  相似文献   

15.
This paper develops an Aitken based modified Kalman filtering stochastic gradient algorithm for dual-rate nonlinear models. The Aitken based method can increase the convergence rate and the modified Kalman filter can improve the estimation accuracy. Thus compared to the traditional auxiliary model based stochastic gradient algorithm, the proposed algorithm in this paper is more effective, and this is proved by the convergence analysis. Furthermore, two simulated examples are given to illustrate the effectiveness of the proposed algorithm.  相似文献   

16.
In this paper, a command filter based dynamic surface control (DSC) is developed for stochastic nonlinear systems with input delay, stochastic unmodeled dynamics and full state constraints. An error compensation system is designed to constrain the filtering error caused by the first-order filter in the traditional dynamic surface design. On this basis, the stability proof of DSC for stochastic nonlinear systems based on command filter is proposed. The definition of state constraints in probability is presented, and the problem of stochastic full state constraints is solved by constructing a group of coordinate transformations with nonlinear mappings. The Pade approximation is adopted to deal with input delay. The stochastic unmodeled dynamics is considered, which is processed by utilizing the property of stochastic input-to-state stability (SISS) and changing supply function. All the signals of the system are proved to be semi-globally uniformly ultimately bounded (SGUUB) in probability, and the full state constraints are not violated. The two simulation examples also verify the effectiveness of the proposed adaptive DSC scheme.  相似文献   

17.
This paper mainly focuses on the event-based state and fault estimation problem for a class of nonlinear systems with logarithmic quantization and missing measurements. The sensors are assumed to have different missing probabilities and a constant fault is considered here. Different from a constant threshold in existing event-triggered schemes, the threshold in this paper is varying in the state-independent condition. With resort to the state augmentation approach, a new state vector consisting of the original state vector and the fault is formed, thus the corresponding state and fault estimation problem is transmitted into the recursive filtering problem. By the stochastic analysis approach, an upper bound for the filtering error covariance is obtained, which is expressed by Riccati difference equations. Meanwhile, the filter gain matrix minimizing the trace of the filtering error covariance is also derived. The developed recursive algorithm in the current paper reflects the relationship among the upper bound of the filtering error covariance, the varying threshold, the linearization error, the probabilities of missing measurements and quantization parameters. Finally, two examples are utilized to verify the effectiveness of the proposed estimation algorithm.  相似文献   

18.
This paper investigates the problem of robust H filtering for switched stochastic systems under asynchronous switching. The so-called asynchronous switching means that the switching between the filters and system modes is asynchronous. The aim is to design a filter ensuring robust exponential mean square stability and a prescribed H performance level for the filtering error systems. Based on the average dwell time approach and piecewise Lyapunov functional technique, sufficient conditions for the existence of the robust H filter are derived, and the proposed filter can be obtained by solving a set of LMIs(linear matrix inequalities). Finally, a numerical example is given to show the effectiveness of the proposed approach.  相似文献   

19.
In this paper, a dynamically event-triggered filtering problem is investigated for a class of discrete time-varying systems with censored measurements and parameter uncertainties. The censored measurements under consideration are described by the Tobit measurement model. In order to save the communication energy, a dynamically event-triggered mechanism is utilized to decide whether the measurements should be transmitted to the filter or not. The aim of this paper is to design a robust recursive filter such that the filtering error covariance is minimized in certain sense for all the possible censored measurements, parameter uncertainties as well as the effect induced by the dynamically event-triggered mechanism. By means of the mathematical induction, an upper bound is firstly derived for the filtering error covariance in terms of recursive matrix equations. Then, such an upper bound is minimized by designing the filter gain properly. Furthermore, the boundedness is analyzed for the minimized upper bound of the filtering error covariance. Finally, two numerical simulations are exploited to demonstrate the effectiveness of the proposed filtering algorithm.  相似文献   

20.
This paper is concerned with the robust state estimation problem for semi-Markovian switching complex-valued neural networks with quantization effects (QEs). The uncertain parameters are described by the linear fractional uncertainties (LFUs). To enhance the channel utilization and save the communication resources, the measured output is quantized before transmission by a logarithmic quantizer. The purpose of the problem under consideration is to design a full-order state estimator to estimate the complex-valued neuron states. Based on the Lyapunov stability theory, stochastic analysis method, and some improved integral inequalities, sufficient conditions are first derived to guarantee the estimation error system to be globally asymptotically stable in the mean square. Then, the desired state estimator can be directly designed after solving a set of matrix inequalities, which is robust against the LFUs and the QEs. In the end of the paper, one numerical example is provided to illustrate the feasibility and effectiveness of the proposed estimation design scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号