首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of The Franklin Institute》2023,360(14):10536-10563
A new framework of optimal fractional order proportional-derivative-integral (FOPID) controller series with fuzzy proportional-derivative (PD) controller, namely OFPD-FOPID controller, is proposed in this study for seismic control of structures equipped with active tuned mass damper (ATMD). Three controllers including optimal PID, optimal FOPID, and fuzzy PID (FPID) controllers are also implemented for comparison purposes. Simulation results carried out on a 15-story building show the FOPID controller than the PID and FPID controllers can remarkably reduce the maximum floor displacement, but they represent a poor performance in mitigation of the maximum floor acceleration in different soil conditions, while the proposed OFPD-FOPID controller tracking the amount of the maximum floor acceleration to estimate the optimal control force of the actuator can provide superior performance. An average reduction of 41%, 45%, and 33% in the maximum floor displacement; 36%, 33%, and 20% in the maximum inter-story drift are given by FOPID in the dense, medium, and soft soils, while it results in an increase of 45%, 52% and 24% in the maximum floor acceleration. Similarly, the proposed OFPD-FOPID controller represents an average reduction of 52%, 55%, and 45% in the maximum floor displacement; 42%, 44%, and 28% in the maximum inter-story drift in the dense, medium, and soft soils, while it also slightly reduces the maximum floor acceleration of the studied structure located on different soil conditions.  相似文献   

2.
This paper investigates the application of deep reinforcement learning (RL) in the motion control for an autonomous underwater vehicle (AUV), and proposes a novel general motion control framework which separates training and deployment. Firstly, the state space, action space, and reward function are customized under the condition of ensuring generality for various motion control tasks. Next, in order to efficiently learn the optimal motion control policy in the case that the AUV model is imprecise and there are unknown external disturbances, a virtual AUV model composed of the known and determined items of an actual AUV is put forward and a simulation training method is developed on this basis. Then, in the given deployment method, three independent extended state observers (ESOs) are designed to deal with the unknown items in different directions, and the final controller is obtained by compensating the estimated value of ESOs into the output of the optimal motion control policy obtained through simulation training. Finally, soft actor-critic is chosen as deep RL algorithm of the framework, and the generality and effectiveness of the proposed method are verified in four different AUV motion control tasks.  相似文献   

3.
The interconnected large-scale power systems are liable to performance degradation under the presence of sudden small load demands, parameter ambiguity and structural changes. Due to this, to supply reliable electric power with good quality, robust and intelligent control strategies are extremely requisite in automatic generation control (AGC) of power systems. Hence, this paper presents an output scaling factor (SF) based fuzzy classical controller to enrich AGC conduct of two-area electrical power systems. An implementation of imperialist competitive algorithm (ICA) is made to optimize the output SF of fuzzy proportional integral (FPI) controller employing integral of squared error criterion. Initially the study is conducted on a well accepted two-area non-reheat thermal system with and without considering the appropriate generation rate constraint (GRC). The advantage of the proposed controller is illustrated by comparing the results with fuzzy controller and bacterial foraging optimization algorithm (BFOA)/genetic algorithm (GA)/particle swarm optimization (PSO)/hybrid BFOA-PSO algorithm/firefly algorithm (FA)/hybrid FA-pattern search (hFA-PS) optimized PI/PID controller prevalent in the literature. The proposed approach is further extended to a newly emerged two-area reheat thermal-PV system. The superiority of the method is depicted by contrasting the results of GA/FA tuned PI controller. The proposed control approach is also implemented on a multi-unit multi-source hydrothermal power system and its advantage is established by Correlating its results with GA/hFA-PS tuned PI, hFA-PS/grey wolf optimization (GWO) tuned PID and BFOA tuned FPI controllers. Finally, a sensitivity analysis is performed to demonstrate the robustness of the proposed method to broad changes in the system parameters and size and/or location of step load perturbation.  相似文献   

4.
《Journal of The Franklin Institute》2023,360(14):10564-10581
In this work, we investigate consensus issues of discrete-time (DT) multi-agent systems (MASs) with completely unknown dynamic by using reinforcement learning (RL) technique. Different from policy iteration (PI) based algorithms that require admissible initial control policies, this work proposes a value iteration (VI) based model-free algorithm for consensus of DTMASs with optimal performance and no requirement of admissible initial control policy. Firstly, in order to utilize RL method, the consensus problem is modeled as an optimal control problem of tracking error system for each agent. Then, we introduce a VI algorithm for consensus of DTMASs and give a novel convergence analysis for this algorithm, which does not require admissible initial control input. To implement the proposed VI algorithm to achieve consensus of DTMASs without information of dynamics, we construct actor-critic networks to online estimate the value functions and optimal control inputs in real time. At last, we give some simulation results to show the validity of the proposed algorithm.  相似文献   

5.
In this paper, a novel on-line observer-based trajectory tracking strategy for leader-follower formation of multiple nonholonomic mobile robots is developed. In the proposed strategy, a leader robot follows a certain trajectory whereas a number of followers track the leader as specified by a formation protocol. Unlike other techniques in the literature, a predefined trajectory is not required, and it can be changed on-line. Moreover, this strategy aims to have a fast transient response without showing undesired overshoots. To achieve this feature, a new observer is introduced. Based on the output of that observer, a control strategy with two components is derived. The first control component is responsible for tracking the desired trajectory, whereas the second control component is used to regulate the robot to its desired steady state position. The stability of the closed loop control system is investigated. Applications of the proposed observer-based controller to different case studies are presented to illustrate the effectiveness, robustness and applicability of the developed technique. To show the superiority of proposed controller, its performance in a trajectory tracking application is compared to that of a Lyapunov-based controller.  相似文献   

6.
This paper presents the design of a controller based on the block control technique combined with the super twisting control algorithm for trajectory tracking of a quadrotor helicopter. A first order exact differentiator is used in order to estimate the virtual control inputs, which simplifies the control law design. In addition, the wind parameter resulting from the aerodynamic forces is also estimated in order to ensure robustness against these unmatched perturbations. The stability and finite time convergence of the exact differentiator have been recently proved by means of Lyapunov functions, and therefore the stability analysis of the proposed controller has been carried out along the same lines. The performance and effectiveness of the proposed controller are tested in a simulation study taking into account external disturbances.  相似文献   

7.
This paper investigates the frequency change problem of hydraulic turbine regulating system based on terminal sliding mode control method. By introducing a novel terminal sliding mode surface, a global fast terminal sliding mode controller is designed for the closed loop. This controller eliminates the slow convergence problem which arises in the terminal sliding mode control when the error signal is not near the equilibrium. Meanwhile, following consideration of the error caused by the actuator dead zone, an adaptive RBF estimator based on sliding mode surface is proposed. Through the dead zone error estimation for feed-forward compensation, the composite terminal sliding mode controller has been verified to possess an excellent performance without sacrificing disturbance rejection robustness and stability. Simulations have been carried out to validate the superiority of our proposed methods in comparison with other two other kinds of sliding mode control methods and the commonly used PID and FOPID controller. It is shown that the simulation results are in good agreement with the theoretical analysis.  相似文献   

8.
In this study, an adaptive interval type-2 Takagi-Sugeno-Kang fuzzy logic controller based on reinforcement learning (AIT2-TSK-FLC-RL) is proposed. The proposed controller consists of an actor, a critic and a reward signal. The actor is represented by the IT2-TSK-FLC in which the antecedents and the consequents are interval type-2 fuzzy sets (IT2FSs) and type-1 fuzzy sets (T1FSs), respectively, which are named A2-C1. The critic is represented by a neural network, which approximates the optimal guaranteed cost in the control design to ensure the system stability for all admissible uncertainties and noise. The use of a reward signal to formalize the idea of a goal is one of the most distinctive features of RL. Thus, the proposed controller evolves in time as a result of the online learning algorithm. The parameters of the proposed controller are learned online based on the Lyapunov theorem to guarantee the stability, overcome the shortcomings of the gradient descent, such as the local minima and instability, and determine the learning rate of the IT2-TSK-FLC controller. Furthermore, the critic stability is discussed for determining the optimal learning rate. The proposed controller is applied to uncertain nonlinear systems to show its robustness in reducing the effect of system uncertainties and external disturbances and is compared to other controllers.  相似文献   

9.
In this paper, a novel tracking control scheme for continuous-time nonlinear affine systems with actuator faults is proposed by using a policy iteration (PI) based adaptive control algorithm. According to the controlled system and desired reference trajectory, a novel augmented tracking system is constructed and the tracking control problem is converted to the stabilizing issue of the corresponding error dynamic system. PI algorithm, generally used in optimal control and intelligence technique fields, is an important reinforcement learning method to solve the performance function by critic neural network (NN) approximation, which satisfies the Lyapunov equation. For the augmented tracking error system with actuator faults, an online PI based fault-tolerant control law is proposed, where a new tuning law of the adaptive parameter is designed to tolerate four common kinds of actuator faults. The stability of the tracking error dynamic with actuator faults is guaranteed by using Lyapunov theory, and the tracking errors satisfy uniformly bounded as the adaptive parameters get converged. Finally, the designed fault-tolerant feedback control algorithm for nonlinear tracking system with actuator faults is applied in two cases to track the desired reference trajectory, and the simulation results demonstrate the effectiveness and applicability of the proposed method.  相似文献   

10.
To perform repetitive tasks, this paper proposes an adaptive boundary iterative learning control (ILC) scheme for a two-link rigid–flexible manipulator with parametric uncertainties. Using Hamilton?s principle, the coupled ordinary differential equation and partial differential equation (ODE–PDE) dynamic model of the system is established. In order to drive the joints to follow desired trajectory and eliminate deformation of flexible beam simultaneously, boundary control strategy is added based on the conventional joints torque control. The adaptive iterative learning algorithm for boundary control scheme includes a proportional-derivative (PD) feedback structure and an iterative term. This novel controller is designed to deal with the unmodeled dynamics and other unknown external disturbances. Numerical simulations are provided to verify the performance of proposed controller in MATLAB.  相似文献   

11.
为了实现基于非训练数据的神经模糊控制器的在线学习,提出了一种基于强化学习的神经模糊控制系统和相应的学习算法。该控制系统由神经模糊预测器和神经模糊控制器两部分组成,其中,神经模糊控制器采用基于确定度的模糊规则模型作为知识表示形式的扩展型神经模糊网络。在学习算法的设计中,尝试了利用强化信号得到输入状态的“期望输出”,进而将强化学习转化为基于训练数据学习的解决思路。仿真实验验证了所提出的控制系统结构和学习算法的合理性和可行性。  相似文献   

12.
Unmanned surface vehicles (USVs) are a promising marine robotic platform for numerous potential applications in ocean space due to their small size, low cost, and high autonomy. Modelling and control of USVs is a challenging task due to their intrinsic nonlinearities, strong couplings, high uncertainty, under-actuation, and multiple constraints. Well designed motion controllers may not be effective when exposed in the complex and dynamic sea environment. The paper presents a fully data-driven learning-based motion control method for an USV based on model-based deep reinforcement learning. Specifically, we first train a data-driven prediction model based on a deep network for the USV by using recorded input and output data. Based on the learned prediction model, model predictive motion controllers are presented for achieving trajectory tracking and path following tasks. It is shown that after learning with random data collected from the USV, the proposed data-driven motion controller is able to follow trajectories or parameterized paths accurately with excellent sample efficiency. Simulation results are given to illustrate the proposed deep reinforcement learning scheme for fully data-driven motion control without any a priori model information of the USV.  相似文献   

13.
This article presents a novel tuning design of Proportional-Integral-Derivative (PID) controller in the Automatic Voltage Regulator (AVR) system by using Cuckoo Search (CS) algorithm with a new time domain performance criterion. This performance criterion was chosen to minimize the maximum overshoot, rise time, settling time and steady state error of the terminal voltage. In order to compare CS with other evolutionary algorithms, the proposed objective function was used in Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC) algorithms for PID design of the AVR system. The performance of the proposed CS based PID controller was compared to the PID controllers tuned by the different evolutionary algorithms using various objective functions proposed in the literature. Dynamic response and a frequency response of the proposed CS based PID controller were examined in detail. Moreover, the disturbance rejection and robustness performance of the tuned controller against parametric uncertainties were obtained, separately. Energy consumptions of the proposed PID controller and the PID controllers tuned by the PSO and ABC algorithms were analyzed thoroughly. Extensive simulation results demonstrate that the CS based PID controller has better control performance in comparison with other PID controllers tuned by the PSO and ABC algorithms. Furthermore, the proposed objective function remarkably improves the PID tuning optimization technique.  相似文献   

14.
A homing mechanism is required for repositioning as a system performs tasks repeatedly. By examining the effect of poor repositioning on the tracking performance of iterative learning control, this paper develops a varying-order learning approach for the performance improvement. Through varying-order learning, the resultant system output trajectory is ensured to follow a given trajectory with a lowered error bound, in comparison with the conventional fixed-order method. A discrete-time initial rectifying action is introduced in the formed varying-order learning algorithm, and a sufficient condition for convergence is derived. An implementable scheme is presented based on the proposed approach, and illustrated by numerical results of two examples of robotic manipulators.  相似文献   

15.
High frequency measurement noise rejection based on disturbance observer   总被引:1,自引:0,他引:1  
A new feedback controller architecture based on disturbance observer (DOB) is proposed to deal with high-frequency measurement noise for high accuracy performance. Compared with the classical DOB-based control system the proposed control structure adds another controller to compensate the feedback of system output. Thus, these influences of both high-frequency measurement noise and low-frequency external disturbance on the system output could be eliminated simultaneously. Meanwhile, the new control system architecture can potentially overcome the conflict between performance and robustness in the traditional feedback framework. A numerical example is included at the end of this paper to illustrate the effectiveness.  相似文献   

16.
Design of an optimal controller requires optimization of multiple performance measures that are often noncommensurable and competing with each other. Design of such a controller is indeed a multi-objective optimization problem. Non-dominated sorting in genetic algorithms-II (NSGA-II) is a popular non-domination based genetic algorithm for solving multi-objective optimization problems. This paper investigates the application of NSGA-II technique for the design of a flexible AC transmission system (FACTS)-based controller. The design objective is to improve the stability of the power system with minimum control effort. The proposed technique is applied to generate Pareto set of global optimal solutions to the given multi-objective optimization problem. Further, a fuzzy-based membership value assignment method is employed to choose the best compromise solution from the obtained Pareto solution set. Further, a detailed analysis on the selection of control signals (both local and remote signals) on the effectiveness of the proposed controller is carried out and simulation results are presented under various loading conditions and disturbances to show the effectiveness and robustness of the proposed approach.  相似文献   

17.
This paper is concerned with the problem of adaptive event-triggered (AET) based optimal fuzzy controller design for nonlinear networked control systems (NCSs) characterized by Takagi–Sugeno (T–S) fuzzy models. An improved AET communication scheme with a memory adaptive rule is proposed to enhance the utilization of the state response vertex data. Different from the existing ET based results, the improved AET scheme can save more communication resources and acquire better system performance. The sufficient criteria of performance analysis and controller design are presented for the closed-loop control system subject to mismatched membership functions (MFs) and AET scheme. And then, a new MFs online learning algorithm on the basis of the gradient descent approach is employed to optimize the MFs of fuzzy controller and obtain optimal fuzzy controller for further improving system performance. Finally, two simulation examples are presented to verify the advantage and effectiveness of the provided controller design technique.  相似文献   

18.
Rotary steerable system (RSS) is a directional drilling technique which has been applied in oil and gas exploration under complex environment for the requirements of fossil energy and geological prospecting. The nonlinearities and uncertainties which are caused by dynamical device, mechanical structure, extreme downhole environment and requirements of complex trajectory design in the actual drilling work increase the difficulties of accurate trajectory tracking. This paper proposes a model-based dual-loop feedback cooperative control method based on interval type-2 fuzzy logic control (IT2FLC) and actor-critic reinforcement learning (RL) algorithms with one-order digital low-pass filters (LPF) for three-dimensional trajectory tracking of RSS. In the proposed RSS trajectory tracking control architecture, an IT2FLC is utilized to deal with system nonlinearities and uncertainties, and an online iterative actor-critic RL controller structured by radial basis function neural networks (RBFNN) and adaptive dynamic programming (ADP) is exploited to eliminate the stick–slip oscillations relying on its approximate properties both in action function (actor) and value function (critic). The two control effects are fused to constitute cooperative controller to realize accurate trajectory tracking of RSS. The effectiveness of our controller is validated by simulations on designed function tests for angle building hole rate and complete downhole trajectory tracking, and by comparisons with other control methods.  相似文献   

19.
In this paper, inverse optimal neural control for trajectory tracking is applied to glycemic control of type 1 diabetes mellitus (T1DM) patients. The proposed control law calculates the adequate insulin delivery rate in order to prevent hyperglycemia and hypoglycemia levels in T1DM patients. Two models are used: (1) a nonlinear compartmental model in order to obtain type 1 diabetes mellitus virtual patient behavior, and (2) a neural model obtained from an on-line neural identifier, which uses a recurrent neural network, trained with the extended Kalman filter (EKF); the last one allows the applicability of an inverse optimal neural controller. The proposed algorithm is tuned to track a desired trajectory; this trajectory reproduces the glucose absorption of a healthy person. The applicability of the proposed control scheme is illustrated via simulations.  相似文献   

20.
This paper investigates a Q-learning scheme for the optimal consensus control of discrete-time multiagent systems. The Q-learning algorithm is conducted by reinforcement learning (RL) using system data instead of system dynamics information. In the multiagent systems, the agents are interacted with each other and at least one agent can communicate with the leader directly, which is described by an algebraic graph structure. The objective is to make all the agents achieve synchronization with leader and make the performance indices reach Nash equilibrium. On one hand, the solutions of the optimal consensus control for multiagent systems are acquired by solving the coupled Hamilton–Jacobi–Bellman (HJB) equation. However, it is difficult to get analytical solutions directly of the discrete-time HJB equation. On the other hand, accurate mathematical models of most systems in real world are hard to be obtained. To overcome these difficulties, Q-learning algorithm is developed using system data rather than the accurate system model. We formulate performance index and corresponding Bellman equation of each agent i. Then, the Q-function Bellman equation is acquired on the basis of Q-function. Policy iteration is adopted to calculate the optimal control iteratively, and least square (LS) method is employed to motivate the implementation process. Stability analysis of proposed Q-learning algorithm for multiagent systems by policy iteration is given. Two simulation examples are experimented to verify the effectiveness of the proposed scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号