首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we first develop an adaptive shifted Legendre–Gauss (ShLG) pseudospectral method for solving constrained linear time-delay optimal control problems. The delays in the problems are on the state and/or on the control input. By dividing the domain of the problem into a uniform mesh based on the delay terms, the constrained linear time-delay optimal control problem is reduced to a quadratic programming problem. Next, we extend the application of the adaptive ShLG pseudospectral method to nonlinear problems through quasilinearization. Using this scheme, the constrained nonlinear time-delay optimal control problem is replaced with a sequence of constrained linear-quadratic sub-problems whose solutions converge to the solution of the original nonlinear problem. The method is called the iterative-adaptive ShLG pseudospectral method. One of the most important advantages of the proposed method lies in the case with which nonsmooth optimal controls can be computed when inequality constraints and terminal constraints on the state vector are imposed. Moreover, a comparison is made with optimal solutions obtained analytically and/or other numerical methods in the literature to demonstrate the applicability and accuracy of the proposed methods.  相似文献   

2.
In this paper, we investigate the consensus tracking problem of nonlinear MASs with nonuniform time-varying input delays and external disturbances. For each follower, the composited disturbance observer and the state observer are employed to estimate bounded composited disturbances and unmeasured states, and a distributed observer based on output-feedback is proposed to approximate the leader’s states approachably. Sequentially, the consensus tracking control is converted into a stability control problem for the nonlinear MASs with nonuniform time-varying input delays. Subsequently, a distributed controller based on the truncated prediction approach is presented, which only depends on the boundary value of time-varying input delays. The distributed controller can render each follower synchronically stable via the Lyapunov stability theory. Finally, a group of single-link manipulators is used as an example to verify the effectiveness of the theoretical results.  相似文献   

3.
This paper studies the consensus problem for a class of nonlinear multi-agent systems with asymmetric time-varying output constraints and completely unknown non-identical control directions. Firstly, in order to deal with the problem of asymmetric time-varying output constraints, the original output-constrained multi-agent systems are transformed into new unconstrained multi-agent systems by constructing the state transformation for each agent. Secondly, the emergence of multiple Nussbaum-type function terms is avoided by introducing novel sliding-mode-esque auxiliary variables and consensus estimate variables, which allows the control directions to be completely unknown non-identical. Thirdly, a novel control strategy is proposed by combining novel variables with state transformation method for the first time, which makes the design of distributed consensus protocol more concise. Through Lyapunov stability analysis, the proposed distributed protocol ensures that the output constraints are never violated and the consensus can be achieved asymptotically. Finally, a practical simulation example is given to demonstrate the effectiveness of the proposed distributed consensus protocol.  相似文献   

4.
This paper investigates the synchronous control problem for a class of flexible telerobotic systems subject to system uncertainties and communication constraints. In view of the asymmetric time-varying communication delays, an adaptive time-delay estimator is designed to reduce the impacts of delays on the system. Moreover, by combining the neural networks and parameter adaptive method, the uncertainties of system dynamics are estimated and compensated. Based on these efforts, a new adaptive compensation control protocol is proposed. Additionally, input quantization in network control induced chattering phenomenon and unknown parameters is also dealt with by the adaptive compensation method. A useful characteristic of this paper is that the “complexity explosion” problem caused by the backstepping technique is circumvented effectively. Finally, sufficient conditions are derived for the synchronous control of the master-slave flexible telerobotic system under Lyapunov stability theory. A numerical example of flexible-joint robotic system is provided to illustrate the effectiveness of the proposed control schemes.  相似文献   

5.
In this paper, a command filter based dynamic surface control (DSC) is developed for stochastic nonlinear systems with input delay, stochastic unmodeled dynamics and full state constraints. An error compensation system is designed to constrain the filtering error caused by the first-order filter in the traditional dynamic surface design. On this basis, the stability proof of DSC for stochastic nonlinear systems based on command filter is proposed. The definition of state constraints in probability is presented, and the problem of stochastic full state constraints is solved by constructing a group of coordinate transformations with nonlinear mappings. The Pade approximation is adopted to deal with input delay. The stochastic unmodeled dynamics is considered, which is processed by utilizing the property of stochastic input-to-state stability (SISS) and changing supply function. All the signals of the system are proved to be semi-globally uniformly ultimately bounded (SGUUB) in probability, and the full state constraints are not violated. The two simulation examples also verify the effectiveness of the proposed adaptive DSC scheme.  相似文献   

6.
In this paper, a novel backstepping-based adaptive dynamic programming (ADP) method is developed to solve the problem of intercepting a maneuver target in the presence of full-state and input constraints. To address state constraints, a barrier Lyapunov function is introduced to every backstepping procedure. An auxiliary design system is employed to compensate the input constraints. Then, an adaptive backstepping feedforward control strategy is designed, by which the tracking problem for strict-feedback systems can be reduced to an equivalence optimal regulation problem for affine nonlinear systems. Secondly, an adaptive optimal controller is developed by using ADP technique, in which a critic network is constructed to approximate the solution of the associated Hamilton–Jacobi–Bellman (HJB) equation. Therefore, the whole control scheme consists of an adaptive feedforward controller and an optimal feedback controller. By utilizing Lyapunov's direct method, all signals in the closed-loop system are guaranteed to be uniformly ultimately bounded (UUB). Finally, the effectiveness of the proposed strategy is demonstrated by using a simple nonlinear system and a nonlinear two-dimensional missile-target interception system.  相似文献   

7.
This paper is devoted to adaptive neural network control issue for a class of nonstrict-feedback uncertain systems with input delay and asymmetric time-varying state constraints. State-related external disturbances are involved into the system, and the upper bounds of disturbances are assumed as functions of state variables instead of constants. Additionally, during the approximations of unknown functions by neural networks, the online computation burdens are declined sharply, since the norms of neural network weight vectors are only estimated. In the process of dealing with input delay, an auxiliary function is applied such that the conditions for time delay are more general than the ones in existing literature. A novel adaptive neural network controller is designed by constructing the asymmetric barrier Lyapunov function, which guarantees that the output of system has a good tracking performance and the state variables never violate the asymmetric time-varying constraints. Finally, numerical simulations are presented to verify the proposed adaptive control scheme.  相似文献   

8.
This article studies the neuroadaptive full-state constraints control problem for a class of electromagnetic active suspension systems (EASSs). First, the original constraint system with arbitrary initial values is transformed into a new constraint system with zero initial values by using the shift function method. Then, a new kind of cotangent-type nonlinear state-dependent transition function is constructed to solve the asymmetric time-varying full-state constraints control problem, which eliminates the limitation that the virtual controller needs to satisfy the feasibility conditions in the previous full-state constraints control based on Barrier Lyapunov Function (BLF) and Integral BLF. Furthermore, the neural networks (NNs) are used as nonlinear function approximators to deal with the unknown nonlinear dynamics of EASSs, a neuroadaptive full-state constraints control design method is proposed under the Backstepping recursive design framework. Finally, the effectiveness of the proposed method is verified by a simulation of EASSs with road disturbances.  相似文献   

9.
In this paper, a numerical method to solve nonlinear optimal control problems with terminal state constraints, control inequality constraints and simple bounds on the state variables, is presented. The method converts the optimal control problem into a sequence of quadratic programming problems. To this end, the quasilinearization method is used to replace the nonlinear optimal control problem with a sequence of constrained linear-quadratic optimal control problems, then each of the state variables is approximated by a finite length Chebyshev series with unknown parameters. The method gives the information of the quadratic programming problem explicitly (The Hessian, the gradient of the cost function and the Jacobian of the constraints). To show the effectiveness of the proposed method, the simulation results of two constrained nonlinear optimal control problems are presented.  相似文献   

10.
This paper studies the robust stabilization problem of a class of uncertain Lipschitz nonlinear systems with infinite distributed input delays. A novel robust predictor feedback controller is developed and the controller gain can be obtained via solving a linear matrix inequality. It is shown that the proposed robust predictor feedback controller can globally exponentially stabilize the concerned uncertain nonlinear system with infinite distributed input delays. The key to the proposed approach is the development of several new quadratic Lyapunov functionals. The obtained results are extended to the case of systems with both multiple constant input delays and infinite distributed input delays. It is noted that the obtained results include some existing results on systems with constant input delays or bounded distributed input delays as special cases. Finally, two examples of Chua’s circuit and spacecraft rendezvous system are presented to illustrate the effectiveness of the proposed robust controllers.  相似文献   

11.
In this paper, we study the consensus tracking control problem of a class of strict-feedback multi-agent systems (MASs) with uncertain nonlinear dynamics, input saturation, output and partial state constraints (PSCs) which are assumed to be time-varying. An adaptive distributed control scheme is proposed for consensus achievement via output feedback and event-triggered strategy in directed networks containing a spanning tree. To handle saturated control inputs, a linear form of the control input is adopted by transforming the saturation function. The radial basis function neural network (RBFNN) is applied to approximate the uncertain nonlinear dynamics. Since the system outputs are the only available data, a high-gain adaptive observer based on RBFNN is constructed to estimate the unmeasurable states. To ensure that the constraints of system outputs and partial states are never violated, a barrier Lyapunov function (BLF) with time-varying boundary function is constructed. Event-triggered control (ETC) strategy is applied to save communication resources. By using backstepping design method, the proposed distributed controller can guarantee the boundedness of all system signals, consensus tracking with a bounded error and avoidance of Zeno behavior. Finally, the correctness of the theoretical results is verified by computer simulation.  相似文献   

12.
This paper addresses the problem of leader-follower consensus fault-tolerant control for a class of nonlinear multi-agent systems with output constraints. Specifically, a new nonlinear state transformation function is proposed to deal with the asymmetric constraint on output. Moreover, by integrating backstepping and radial basis function neural network approaches, an adaptive consensus control framework is developed with a single parameter estimator, which mitigates the computation of control algorithm in comparison with conventional adaptive approximation based control techniques. Then an adaptive compensation method is proposed to eliminate the effect of actuator failure. Under the proposed control scheme, all the closed-loop signals of the systems are bounded and the consensus tracking error converges to an adjustable small neighborhood of zero. To evaluate the developed control algorithm, a group of four networked two-stage chemical reactors is used to illustrate the effectiveness of the theoretic results obtained.  相似文献   

13.
This paper solves the problem of adaptive neural dynamic surface control (DSC) for a class of full state constrained stochastic nonlinear systems with unmodeled dynamics. The concept of the state constraints in probability is first proposed and applied to the stability analysis of the system. The full state constrained stochastic nonlinear system is transformed to the system without state constraints through a nonlinear mapping. The unmodeled dynamics is dealt with by introducing a dynamic signal and the adaptive neural dynamic surface control method is explored for the transformed system. It is proved that all signals of the closed-loop system are bounded in probability and the error signals are semi-globally uniformly ultimately bounded(SGUUB) in mean square or the sense of four-moment. At the same time, the full state constraints are not violated in probability. The validity of the proposed control scheme is demonstrated through the simulation examples.  相似文献   

14.
This paper studies the adaptive tracking control problem for a class of uncertain high-order fully actuated (HOFA) systems with actuator faults and full-state constraints. Firstly, we design a novel nonlinear transformation function (NTF) only related to state and constraint boundaries and capable of handling asymmetric time-varying constraints. With the designed function, we obtain an equivalent totally unconstrained HOFA model which is generally simpler to design controllers than first-order state-space model. Then, the adaptive fault-tolerant controller is constructed with the help of the HOFA approach. By applying the Lyapunov stability theory, it is rigorously proved that the output tracking error converges to zero asymptotically, other signals of the resulting closed-loop systems are bounded, and full-state constraints are not violated for all time. Finally, the simulation results verify the efficiency of the proposed control design method.  相似文献   

15.
This paper investigates the finite-time consensus problem of uncertain nonlinear multi-agent systems with asymmetric time-varying delays and directed communication topology. An auxiliary system is firstly designed to deal with the continuous or discontinuous time-varying communication delays. Based on the finite-time input-to-output framework, a novel consensus scheme relying on local delayed information exchange is proposed. Moreover, by utilizing an auxiliary integrated regressor matrix and vector method, the system uncertainties can be accurately estimated. Then the consensus of multi-agent systems can be achieved within finite time by selecting the control gains simply. Finally, numerical simulations are provided to demonstrate the effectiveness of the proposed control algorithms.  相似文献   

16.
Global stabilization of high-order nonlinear systems is studied with an asymmetric output constraint. A novel approach is raised by incorporating the unbounded time-varying scaling idea into the barrier Lyapunov function method. This is also suitable for systems with symmetric output constraints and without output constraints simultaneously. By the recursive design algorithm, a time-varying controller is established to ensure that state asymptotically converges to zero and output is always keeping in the given asymmetric domain. Finally, the feasibility of the control scheme is shown with an example.  相似文献   

17.
The main contribution of this paper is to develop an adaptive output-feedback control approach for a class of uncertain nonlinear systems with unknown time-varying delays in the pure-feedback form. Both the non-affine nonlinear functions and the unknown time-varying delayed functions related to all state variables are considered. These conditions make the controller design difficult and challenging because the output-feedback controller should be designed using only the output information. In order to overcome these conditions, we design an observer-based adaptive dynamic surface controller where the time-delay effects are compensated by using appropriate Lyapunov–Krasovskii functionals and the function approximation technique using neural networks. A first-order filter is added to the control input to avoid the algebraic loop problem caused by the non-affine structure. It is proved that all the signals in the closed-loop system are semi-globally uniformly bounded and the tracking error converges to an adjustable neighborhood of the origin.  相似文献   

18.
This paper is concerned with the adaptive control problem for a class of linear discrete-time systems with unknown parameters based on the distributed model predictive control (MPC) method. Instead of using the system state, the state estimate is employed to model the distributed state estimation system. In this way, the system state does not have to be measurable. Furthermore, in order to improve the system performance, both the output error and its estimation are considered. Moreover, a novel Lyapunov functional, comprised of a series of distributed traces of estimation errors and their transposes, has been presented. Then, sufficient conditions are obtained to guarantee the exponential ultimate boundedness of the system as well as the asymptotic stability of the error system by solving a nonlinear programming (NP) problem subject to input constraints. Finally, the simulation examples is given to illustrate the effectiveness and the validity of the proposed technique.  相似文献   

19.
20.
This paper focuses on the problem of adaptive tracking quantized control for a class of interconnected pure feedback time delay nonlinear systems. To satisfy the requirement of prescribed performance on the output tracking error, a novel asymmetric tangent barrier Lyapunov function is developed. The decentralized adaptive controller is designed via backstepping method. To deal with the uncertain interconnected nonlinear functions, we design a new virtual control input in the first step. Instead of estimating the bound of each unknown function, we use the adaptive method to estimate the bound of the composite function which is composed of the unknown functions. Thus the over parameterization problem is avoided. It is proved that the output of each subsystem satisfies the prescribed performance requirement and other state variables are bounded. Finally, the simulations are performed and the results verify the effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号