首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this paper, a robust actuator fault diagnosis scheme is investigated for satellite attitude control systems subject to model uncertainties, space disturbance torques and gyro drifts. A nonlinear unknown input observer is designed to detect the occurrence of any actuator fault. Subsequently, a bank of adaptive unknown input observers activated by the detection results are designed to isolate which actuator is faulty and then estimate of the fault parameter. Fault isolation is achieved based on the well known generalized observer strategy. The simulation on a closed-loop satellite control system with time-varying or constant actuator faults in the form of additive and multiplicative unknown dynamics demonstrates the effectiveness of the proposed robust fault diagnosis strategy.  相似文献   

3.
Practical time-varying output formation tracking problems with collision avoidance, obstacle dodging and connectivity maintenance for high-order multi-agent systems are investigated, and the practical time-varying output formation tracking error is controlled within an arbitrarily small bound. The outputs of followers are designed to track the output of the leader with unknown control input while retaining the predefined time-varying formation. Uncertainties are considered in the dynamics of the followers and the leader. Firstly, distributed extended state observers are developed to estimate the uncertainties and the leader’s unknown control input. A strategy of obstacle dodging is given by designing an ideal secure position for the followers which are in the threatened area of the obstacles. By constructing collision avoidance, obstacle dodging and connectivity maintenance artificial potential functions, corresponding negative gradient terms are calculated to achieve the safety guarantee. Secondly, a practical time-varying output formation tracking protocol is proposed by using distributed extended state observers and the negative gradient terms. Additionally, an approach is presented to determine the gain parameters in the protocol. The stability of the closed-loop multi-agent system with the protocol is analyzed by using Lyapunov stability theory. Finally, a simulation experiment is provided to illustrate the effectiveness of the obtained methods.  相似文献   

4.
In this paper, a new approach to robust H filtering for a class of nonlinear systems with time-varying uncertainties is proposed in the LMI framework based on a general dynamical observer structure. The nonlinearities under consideration are assumed to satisfy local Lipschitz conditions and appear in both state and measured output equations. The admissible Lipschitz constants of the nonlinear functions are maximized through LMI optimization. The resulting H observer guarantees asymptotic stability of the estimation error dynamics with prespecified disturbance attenuation level and is robust against time-varying parametric uncertainties as well as Lipschitz nonlinear additive uncertainty.  相似文献   

5.
《Journal of The Franklin Institute》2022,359(18):10483-10509
In this paper, a fast fixed-time vertical plane motion controller is proposed for autonomous underwater gliders (AUGs) gliding in shallow water. The influence of speed-sensorless conditions, model uncertainties, unknown time-varying external disturbances, input saturations, and state delay are taken into account. To improve control performance, a fast fixed-time stable system is first presented. Based on the system, an adaptive extended state observer (ESO) is developed for estimating speed, model uncertainties, and external disturbances. A fast fixed-time controller is designed for improving the gliding efficiency and reducing the risk of hitting the ocean floor. Moreover, an input saturation auxiliary system and an advance compensation method are presented to cope with input saturations and state delay. According to Lyapunov theory, it is proved that the AUG states can converge into a small neighborhood within a fixed time. Finally, simulation results demonstrate the rapidity and effectiveness of the designed control method.  相似文献   

6.
This paper is concerned with the problem of observer design for a class of discrete-time Lipschitz nonlinear state delayed systems with, or without parameter uncertainty. The nonlinearities are assumed to appear in both the state and measured output equations. For both the cases with and without norm-bounded time-varying parameter uncertainties, a design method is proposed, which involves solving a linear matrix inequality (LMI). When a certain LMI is satisfied, the explicit expression of a desired nonlinear observer is also presented. An example is provided to demonstrate the applicability of the proposed approach.  相似文献   

7.
This paper is concerned with the design of dissipative state observers for a family of time-delay nonlinear systems. The Dissipativity method, proposed by one of the authors for delay-free nonlinear systems, is extended here to a class of time-delay nonlinear systems. The design method consists in decomposing the time-delay estimation error dynamics into a time-delay linear subsystem and a time-varying memoryless nonlinearity, connected in a negative feedback loop. By using some storage functionals, both delay-independent and delay-dependent dissipativity criteria are derived in order to guarantee the exponential convergence property of the observer. The exponential stability of the estimation error is then ensured, assuming that the nonlinearity is dissipative with respect to a quadratic supply rate and the linear part is designed, through the observer gains, to be dissipative with respect to a complementary supply rate. The design conditions are formulated in terms of tractable bilinear (BMI’s) or linear matrix inequalities (LMI’s). An interesting advantage is that the proposed dissipative design extends and generalizes under a unified framework several methods available in the literature, since a wide diversity of nonlinearities can be considered. Numerical examples are provided to demonstrate the effectiveness of the theoretical results.  相似文献   

8.
A linear matrix inequality based mixed H2-dissipative type state observer design approach is presented for smooth discrete time nonlinear systems with finite energy disturbances. This observer is designed to maintain H2 type estimation error performance together with either H or a passivity type disturbance reduction performance in case of randomly varying perturbations in its gain. A linear matrix inequality is used at each time instant to find the time-varying gain of the observer. Simulation studies are included to explore the performance in comparison to the extended Kalman filter and a previously proposed constant gain observer counterpart.  相似文献   

9.
《Journal of The Franklin Institute》2023,360(14):10728-10744
This paper deals with state estimation for a class of Lipschitz nonlinear systems under a time-varying disconnected communication network. A distributed observer consists of some local observers that are connected to each other through a communication network. We consider a situation where a communication network does not remain connected all the time, and the network may be caused by intermittent communication link failure. Moreover, each local observer has access to a local measurement, which may be insufficient to ensure the system’s observability, but the collection of all measurements in the network ensures observability. In this condition, the purpose is to design a distributed observer where the estimated state vectors of all local observers converge to the state vector of the system asymptotically, while local observers exchange estimated state vectors through a communication network and use their local measurements. According to theoretical analysis, a nonlinear and a robust nonlinear distributed observer exist when in addition to the union of all communication topologies being strongly connected during a time interval, the component of each communication graph is also strongly connected during each subinterval. The existence conditions of the distributed observers are derived in terms of a set of linear matrix inequalities (LMIs). Finally, the effectiveness of the presented method is numerically verified using some simulation examples.  相似文献   

10.
The problem of observer-based finite-time H control for discrete-time Markov jump systems with time-varying transition probabilities and uncertainties is studied in this paper, in which time-varying transition probabilities are modelled as convex polyhedron, and the parameter uncertainty satisfies norm-bounded. First of all, a Luenberger observer is designed to measure the system state. Then, observer-based controller is constructed to ensure the stochastic finite-time boundedness of the resulting closed-loop system with an H performance. Furthermore, sufficient conditions are derived in light of linear matrix inequalities. In the end, the flexibility and applicability of the developed methods are demonstrated by two illustrative examples.  相似文献   

11.
This paper reports a new method for designing distributed reduced-order functional observers of a class of interconnected systems with time delays. The systems under consideration belong to a class of large-scale systems where each system is formed by a number of interconnected subsystems. Moreover, the interconnections and the states of the local subsystems are subject to heterogeneous time delays. The novel contribution of this paper lies in the development of new coordinate state transformations, which are used to transform the interconnected subsystems into decoupled subsystems. Most significantly, each decoupled subsystem does not contain any time delay in the state vector. Moreover, each decoupled subsystem is expressed in an observable canonical form, with time delays only appearing in the inputs and outputs of the system. Due to this novel structure, a reduced-order functional observer for each decoupled subsystem can be easily designed to estimate the unmeasurable local state vector. The designed observers for the local subsystems do not need to exchange the state estimates amongst themselves, and therefore, each observer for each local subsystem can be designed independently. Because of the state transformations, the designed observers have a more general structure than any of the existing distributed functional observers available in the literature. Numerical examples are given to illustrate the effectiveness and advantages of our results.  相似文献   

12.
This paper presents an extended state observer-based output feedback adaptive controller with a continuous LuGre friction compensation for a hydraulic servo control system. A continuous approximation of the LuGre friction model is employed, which preserves the main physical characteristics of the original model without increasing the complexity of the system stability analysis. By this way, continuous friction compensation is used to eliminate the majority of nonlinear dynamics in hydraulic servo system. Besides, with the development of a new parameter adaption law, the problems of parametric uncertainties are overcome so that more accurate friction compensation is realized. For another, the developed adaption law is driven by tracking errors and observation errors simultaneously. Thus, the burden of extended state observer to solve the remaining uncertainties is alleviated greatly and high gain feedback is avoided, which means better tracking performance and robustness are achieved. The designed controller handles not only matched uncertainties but also unmatched dynamics with requiring little system information, more importantly, it is based on output feedback method, in other words, the synthesized controller only relies on input signal and position output signal of the system, which greatly reduces the effects caused by signal pollution, measurement noise and other unexpected dynamics. Lyapunov-based analysis has proved this strategy presents a prescribed tracking transient performance and final tracking accuracy while obtaining asymptotic tracking performance in the presence of parametric uncertainties only. Finally, comparative experiments are conducted on a hydraulic servo platform to verify the high tracking performance of the proposed control strategy.  相似文献   

13.
This paper addresses the problem of designing a state observer for a class of nonlinear discrete-time systems using the dissipativity theory. We show that the dissipative observation methodology, originally proposed by one of the authors for continuous-time nonlinear systems, can be extended to the discrete-time case. For constructing a convergent observer, the methodology is applied to the nonlinear estimation error dynamics, which is decomposed into a discrete-time Linear Time-Invariant (LTI) subsystem in the forward loop, connected to a time-varying static nonlinearity in the feedback loop. In order to assure asymptotic stability of the closed-loop, complementary dissipativity conditions are imposed on each of the subsystems: (i) the static nonlinearity is required to be dissipative with respect to a quadratic supply rate, and (ii) the observer gains are designed such that the LTI system is dissipative with respect to a complementary supply rate. As in the continuous time framework, the proposed method includes as special cases, unifies and generalizes some observer design methods proposed previously in the literature. A great advantage of the Dissipative Observer Design Method proposed here is that it leads to Matrix Inequalities for the design of the observer gains, and these can be usually converted into Linear Matrix Inequalities (LMI’s). The results are illustrated using Chua’s Chaotic system.  相似文献   

14.
In this paper, we consider output tracking for a class of MIMO nonlinear systems which are composed of coupled subsystems with vast mismatched uncertainties. First, all uncertainties influencing the performance of controlled outputs, which include internal unmodelled dynamics, external disturbances, and uncertain nonlinear interactions between subsystems, are refined into the total disturbance in the control channels of subsystems. The total disturbance is shown to be sufficiently reflected in the measured output of each subsystem so that it can be estimated in real time by an extended state observer (ESO) in terms of the measured outputs. Second, we decouple approximately the MIMO systems by cancelling the total disturbance based on ESO estimation so that each subsystem becomes approximately independent linear time invariant one without uncertainty and interaction with other subsystems. Finally, we design an ESO based output feedback for each subsystem separately to ensure that the closed-loop state is bounded, and the closed-loop output of each subsystem tracks practically a given reference signal. This is completely in comply with the spirit of active disturbance rejection control (ADRC). Some numerical simulations are presented to demonstrate the effectiveness of the proposed output feedback control scheme.  相似文献   

15.
Modeling uncertainties including parameter uncertainty and unmodeled dynamics hinder the development of high-performance tracking controller for hydraulic servo system. The observation for the unknown state is another issue worthy of attention. In this paper, a new seamless observer-controller scheme for hydraulic servo system is proposed with partial feedback. The position signal and the pressure signal are firstly used to build an extended structure estimation system for the unknown state. The advantage of this estimation system is that the state observer provides an extended structure for the parameter adaptation compared to other state observers. Thus the parameter uncertainty can be handled. An adaptive robust controller is synthesized in this paper which includes the adaptive part and the robust part. The adaptive part is used to eliminate the parameter uncertainty. Then the residuals coming from the parameter adaption and the errors coming from the state observation are taken into consideration in the robust part. Moreover, the unmodeled dynamics is also handled by the robust part. Theoretical analysis proves that a prescribed transient performance and the final tracking accuracy can be guaranteed by the proposed observer-controller scheme in the presence of both parameter uncertainty and unmodeled dynamics. Furthermore, the convergence of the closed-loop controller-observer system is achieved with the parametric uncertainty existed only. Extensive comparative experiments performed on a hydraulic actuator demonstrate the effectiveness of the proposed observer-controller scheme.  相似文献   

16.
《Journal of The Franklin Institute》2022,359(18):10525-10557
This paper is concerned with an event-triggered adaptive fault-tolerant problem for an uncertain non-affine system. The implicit function theorem and mean value theorem are utilized to transform a non-affine system into an affine one, and an extended state observer and a tracking differentiator are used to estimate unknown dynamics and the derivative of virtual control laws, respectively. Adaptive laws are designed for unknown faults, and an event-triggered control scheme with a time-varying threshold, based on a tracking error and adaptive parameters, is developed. The tracking error is steered to converge to a bounded set with the help of a predefined performance function, and its transient performance is improved despite of faults. The stability of the closed-loop system is analyzed by the theorem of the input-to-state practically stability, and the Zeno behavior is excluded. Finally, two examples are given to illustrate the effectiveness of the proposed scheme.  相似文献   

17.
本文研究了一类具有关联延迟和系统参数不确定的非线性大系统的分散控制问题,系统的匹配/非匹配不确定参数范数有界。首先基于状态观测器设计时延独立的动态输出反馈控制律,并根据 稳定性理论推导并证明了在该控制律作用下系统稳定的充分条件。最后给出一个数值例子来说明本文结果的可行性,仿真结果表明设计出的控制器不仅使得闭环系统稳定而且保证系统不受参数不确定和时延的影响。  相似文献   

18.
This paper investigates the problem of global output feedback stabilization for a class of nonlinear systems with multiple uncertainties. A remarkable feature lies in that the system to be considered is not only involved dynamic and parametric uncertainties but also the measurement output affected by an uncertain continuous function, which leads to the obstacles in the constructions of a state observer and a controller. By revamping the double-domination approach with the skillful implantation of a dynamic gain scheme and nonnegative integral functions, a new design strategy is established by which a global output feedback stabilizer together with a novel state observer can be constructed successfully. The novelty of the presented design is attributed to a perspective in dealing with the output feedback stabilization undergone the unknown continuous (time-varying) output function and dynamic/parametric uncertainties. Finally, an illustrative example is provided to illustrate the effectiveness of the theoretical results.  相似文献   

19.
This paper studies the problem of observer based fast nonsingular terminal sliding mode control schemes for nonlinear non-affine systems with actuator faults, unknown states, and external disturbances. A hyperbolic tangent function based extended state observer is considered to estimate unknown states, which enhances robustness by estimating external disturbance. Then, Taylor series expansion is employed for the non-affine nonlinear system with actuator faults, which transforms it to an affine form system to simplify disturbance observer and controller design. A finite time disturbance observer is designed to address unknown compound disturbances, which includes external disturbances and system uncertainties. A fast nonsingular terminal sliding mode with exponential function sliding mode is proposed to address output tracking. Simulation results show the proposed scheme is effective.  相似文献   

20.
This paper studies the time-varying output formation tracking problems for heterogeneous linear multi-agent systems with multiple leaders in the presence of switching directed topologies, where the agents can have different system dynamics and state dimensions. The outputs of followers are required to accomplish a given time-varying formation configuration and track the convex combination of leaders’ outputs simultaneously. Firstly, using the neighboring relative information, a distributed observer is constructed for each follower to estimate the convex combination of multiple leaders’ states under the influences of switching directed topologies. The convergence of the observer is proved based on the piecewise Lyapunov theory and the threshold for the average dwell time of the switching topologies is derived. Then, an output formation tracking protocol based on the distributed observer and an algorithm to determine the control parameters of the protocol are presented. Considering the features of heterogeneous dynamics, the time-varying formation tracking feasible constraints are provided, and a compensation input is applied to expand the feasible formation set. Sufficient conditions for the heterogeneous multi-agent systems with multiple leaders and switching directed topologies to achieve the desired time-varying output formation tracking under the designed protocol are proposed. Finally, simulation examples are given to validate the theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号