首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The present study investigates the fixed-time synchronization issue for delayed complex networks under intermittent pinning control. Different from some existing semi-intermittent controllers for finite/fixed-time synchronization, our pinning controller is designed in a complete intermittent way. In order to address the encountered theoretical analysis difficulties, a new differential inequality lemma is developed, which is suitable for the fixed-time synchronization studies under periodic or aperiodic complete intermittent control. Then, by using Lyapunov theory and pinning control approach, sufficient conditions are proposed which can guarantee the aperiodically completely intermittent-controlled delayed complex networks realizing fixed-time pinning synchronization. Moreover, the settling time is explicitly estimated, which is irrelevant to the initial values of our network systems. Additionally, as a special case, the scenario of periodic complete intermittent control is also discussed. At last, some simulation examples are utilized to confirm our theoretical outcomes.  相似文献   

2.
Finite-time and fixed-time synchronization (FAFS) of coupled memristive neural networks (CMNNs) with discontinuous feedback functions are explored in this paper. Firstly, a more comprehensive stability theory is systematically established. Secondly, by designing adaptive feedback controller and discontinuous feedback controller, both finite-time and fixed-time synchronization can be realized through regulating the main control parameter. Thirdly, 1-norm and quadratic-norm Lyapunov functions are considered simultaneously in this article, while in estimating the settling time, the former one is more accurate than the latter one under the same synchronization criteria. Finally, in numerical simulation, the analysis and comparison of the proposed controllers are given to show the effectiveness of the corresponding results.  相似文献   

3.
This paper mainly investigates the fixed-time synchronization of memristor-based fuzzy cellular neural network (MFCNN) with time-varying delay. By utilizing differential inclusion, set-valued map theory, the definitions of finite-time and fixed-time stability, we convert the fixed-time synchronization control of the drive-response MFCNN into the equivalent fixed-time stability problem of the error system between the drive-response systems. Some novel sufficient conditions are derived to guarantee the fixed-time synchronization of the drive-response MFCNN based on a simple Lyapunov function and a nonlinear feedback controller. Meanwhile, the settling time can be estimated by simple calculations. Furthermore, these fixed-time synchronization criteria here are easy to validate and extend to the MFCNN without time-varying delay and general memristor-based neural networks. Finally, three numerical examples are given to illustrate the correctness of the main results.  相似文献   

4.
This paper deals with the synchronization control of a class of delayed neural networks using a fast fixed-time control theory. By employing Lyapunov stability theory, a novel sufficient criterion is derived such that two neural networks can be synchronized within a fixed-time. Compared with some existing results, the proposed controller can render two neural networks faster synchronized. A numerical example is given to demonstrate the effectiveness of the criterion.  相似文献   

5.
Multiplex networks involve different types of synchronization due to their complex spatial structure. How to control multiplex networks to achieve different types of synchronization is an interesting topic. This paper considers the fixed-time synchronization of multiplex networks under sliding mode control (SMC). Firstly, for realizing three types of synchronization of multiplex networks in a fixed time, a unified sliding mode surface (SMS) is established. After that, based on the theory of SMC, a sliding mode controller (SMCr) which is more intelligent and has a simpler form than those in the existing literature is put forward for multiplex networks. It can not only guarantee the emergence of sliding mode motion, but also can realize three different kinds of synchronization by adjusting some parameters or even one parameter of the controller. Based on some theories of fixed-time stability, this paper deduces several sufficient conditions for the trajectories of the system to reach the preset SMS in a fixed time, and derives some sufficient conditions for multiplex networks to realize three different types of fixed-time synchronization. At the same time, the settling time which can reveal what factors determine the fixed-time synchronization in multiplex networks is obtained. Finally, in numerical simulations, different chaotic systems are set for each layer of multiplex networks to represent the nodes of different layers, which can prove that the theoretical results are practical and effective.  相似文献   

6.
《Journal of The Franklin Institute》2023,360(13):10251-10274
In this paper, in order to obtain a smaller estimation of settling time, reduce chattering caused by sign function and improve network communication efficiency, the fixed-time (FXT) synchronization of delayed BAM neural networks is analyzed based on some new FXT stability results and non-chattering quantized controllers. Firstly, by comprehensively discussing the conditions of power laws in differential inequalities, a new FXT stability lemma is presented and a smaller upper bound of settling time is estimated. Then, unlike previous controllers with sign functions, a non-chattering quantized state feedback control and a non-chattering quantized pinning control are designed, and some sufficient conditions are derived to ensure FXT synchronization of the established system. Finally, two numerical simulations are given to verify the effectiveness of the theoretical results. The results show that compared with the previous researches, this paper provides a smaller upper bound. However, the convergence time of the uncontrolled nodes is indirectly affected by the coupling of the controlled nodes and is much longer than the estimated upper bound.  相似文献   

7.
In this paper, an adaptive feedback controller is designed to achieve complete synchronization of unidirectionally coupled delayed neural networks with stochastic perturbation. LaSalle-type invariance principle for stochastic differential delay equations is employed to investigate the globally almost surely asymptotical stability of the error dynamical system. An example and numerical simulation are given to demonstrate the effectiveness of the theory results.  相似文献   

8.
This article is mainly focused on investigating pinning exponential synchronization of inertial coupled neural networks (ICNNs) under different directed topologies. The traditional method of variable substitution is removed and replaced by non-reduced order method to investigate the dynamical behavior of second-order coupled system. Additionally, by constructing Lyapunov-Krasovskii functional and utilizing matrix decomposition theory as well as M-matrix theory, an adaptive aperiodically intermittent controller is introduced to derive several improved sufficient criteria based on linear matrix inequalities (LMIs). Finally, some examples with numerical simulation are exhibited to confirm the availability of the theoretical results.  相似文献   

9.
This article investigates the adaptive neural network fixed-time tracking control issue for a class of strict-feedback nonlinear systems with prescribed performance demands, in which the radial basis function neural networks (RBFNNs) are utilized to approximate the unknown items. First, an modified fractional-order command filtered backstepping (FOCFB) control technique is incorporated to address the issue of the iterative derivation and remove the impact of filtering errors, where a fractional-order filter is adopted to improve the filter performance. Furthermore, an event-driven-based fixed-time adaptive controller is constructed to reduce the communication burden while excluding the Zeno-behavior. Stability results prove that the designed controller not only guarantees all the signals of the closed-loop system (CLS) are practically fixed-time bounded, but also the tracking error can be regulated to the predefined boundary. Finally, the feasibility and superiority of the proposed control algorithm are verified by two simulation examples.  相似文献   

10.
This article aims to study fixed-time projective lag synchronization(FXPLS) and preassigned-time projective lag synchronization(PTPLS) of hybrid inertial neural networks(HINNs) with state-switched and discontinuous activation functions(DAFs). By constructing new hybrid fixed-time control and based on theory of non-smooth analysis, we achieve novel results on FXPLS for such HINNs. Through designing novel hybrid preassigned-time control, new criteria on PTPLS of the HINNs is also taken into account. And as distinct from recent works, the FXPLS and PTPLS results are established via non-variable substitution and in a more generalized framework than common synchronization, which also has more extensive practical applications. Finally, example simulations are displayed to set forth the validity of the acquired FXPLS and PTPLS.  相似文献   

11.
In this paper, the problem of pinning and impulsive synchronization between two complex dynamical networks with non-derivative and derivative coupling is investigated. A hybrid controller, which contains a pinning controller and a pinning impulsive controller, is proposed simultaneously. Based on the Lyapunov stability theory and mathematical analysis technique, some novel criteria of synchronization are derived, which can guarantee that the response network asymptotically synchronizes to the drive network by combining pinning control and pinning impulsive control. Moreover, the restrictions about non-derivative coupling matrix, impulsive intervals and the number of pinned nodes are removed. Numerical examples are presented finally to illustrate the effectiveness of the theoretical results.  相似文献   

12.
In this paper, adaptive fixed-time synchronization(FTS) of stochastic memristor-based neural networks(MNNs) with discontinuous activations and mixed delays is investigated. Both continuous and discontinuous activation functions are discussed for stochastic MNNs. Meanwhile, a feedback control strategy and a new adaptive control strategy are proposed to ensure FTS of stochastic MNNs. Since the MNNs are right-hand discontinuous systems, the set-valued mapping and differential inclusion theory are used to deal with its discontinuity. Synchronization criteria and the settling time (ST) are obtained with the aid of some lemmas and mathematical inequalities under corresponding control schemes. It’s worth noting that the ST can be adjusted to desired value by controller parameters regardless of the initial values. Finally, the feasibility of theoretical results are proved via simulation results.  相似文献   

13.
This paper investigate the generalized synchronization and pinning adaptive generalized synchronization for delayed coupled different dimensional neural networks with hybrid coupling, respectively. First, some sufficient conditions for reaching the generalized synchronization and pinning generalized synchronization of the considered network are acquired by using some inequality techniques and Lyapunov functional method. Second, because the precise parameter values of network cannot be obtained in some situations, we also purse the study on the generalized synchronization analysis and pinning control for the case of coupled different dimensional neural networks with parameter uncertainties. Third, two numerical examples are provided for substantiating the effectiveness of the derived results.  相似文献   

14.
This paper investigates global asymptotical synchronization between fractional-order memristor-based neural networks (FMNNs) with multiple time-varying delays (MTDs) by pinning control. Two classes of coupling manners, static manner and dynamic manner, are introduced into the pinning controller respectively. For the case of static coupling, to make the controller exclude fraction, 1-norm Lyapunov function and fractional Halanay inequality in MTDs case are utilized for synthesis of controller and convergence analysis of synchronization error. For the case of dynamic coupling, a fractional differential inequality is proved and discussed in an elaborate way, and then global asymptotical synchronization is analyzed by means of Lyapunov-like function and the newly-proved inequality. Lastly, numerical simulations are carried out to show the practicability of the pinning controllers and the feasibility of the obtained synchronization criteria.  相似文献   

15.
This paper is concerned with the finite-time and fixed-time synchronization of complex networks with discontinuous nodes dynamics. Firstly, under the framework of Filippov solution, a new theorem of finite-time and fixed-time stability is established for nonlinear systems with discontinuous right-hand sides by using mainly reduction to absurdity. Furthermore, for a class of discontinuous complex networks, a general control law is firstly designed. Under the unified control framework and the same conditions, the considered networks are ensured to achieve finite-time or fixed-time synchronization by only adjusting the value of a key control parameter. Based on the similar discussion, a unified control strategy is also provided to realize respectively asymptotical, exponential and finite-time synchronization of the addressed networks. Finally, the derived theoretical results are supported by an example with numerical simulations.  相似文献   

16.
In this article, without decomposing the quaternion-valued neural networks (QVNNs) into two complex-valued subsystems or four real-valued subsystems, quasi-projective synchronization of discrete-time fractional-order QVNNs is investigated. To this end, the sign function for quaternion number is introduced and some related properties are given. Then, two inequalities are built according to the nabla fractional difference and quaternion theory. Subsequently, a simple linear quaternion-valued controller is designed, and some synchronization conditions are given by means of our created inequalities. Finally, numerical simulations are given to prove the feasibility and correctness of the theoretical results.  相似文献   

17.
This paper studies the projective synchronization of neural network in complex-valued domain. Both projective factors and neuron state variables are set as complex values in the synchronization process. In our study, unknown network structure and time-varying delays are considered. With the projective synchronization, the network structure will be identified and the problem of bounded time delays can be solved. With Lyapunov–Krasovskii stability theory and adaptive feedback scheme, controllers are designed and the complex projective synchronization is achieved. In the numerical simulation, several complex-valued neural network examples are provided showing the effectiveness of the theoretical results.  相似文献   

18.
In this paper, the secure synchronization control problem of a class of complex time-delay dynamic networks (CTDDNs) under denial of service (DoS) attacks is studied. Based on the pinning control strategy, a non-fragile sampling controller is designed for a small number of nodes in the complex network. It can effectively solve the problem of limited communication resources and has good anti-interference performance. In order to resist the influence of DoS attacks, an improved comparator algorithm is designed to obtain the specific information of DoS attacks, including the upper and lower bounds of the DoS attacks duration, the DoS attacks frequency and the specific active/sleeping interval of DoS attacks. Based on Lyapunov stability theory and by designing the pinning non-fragile sampling controller, new security synchronization criteria are established for CTDDNs. Finally, two numerical examples are given to verify the validity of the theories.  相似文献   

19.
In practice, it is almost impossible to directly add a controller on each node in a complex dynamical network due to the high control cost and the difficulty of practical implementation, especially for large-scale networks. In order to address this issue, a pinning control strategy is introduced as a feasible alternative. The objective of this paper is first to recall some recent advancements in global pinning synchronization of complex networks with general communication topologies. A systematic review is presented thoroughly from the following aspects, including modeling, network topologies, control methodologies, theoretical analysis methods, and pinned node selection and localization schemes (pinning strategies). Fully distributed adaptive laws are proposed subsequently for the coupling strength as well as pinning control gains, and sufficient conditions are obtained to synchronize and pin a general complex network to a preassigned trajectory. Moreover, some open problems and future works in the field are also discussed.  相似文献   

20.
《Journal of The Franklin Institute》2022,359(18):10558-10577
In this article, a secure exponential synchronization problem is studied for multiplex Cohen-Grossberg neural networks under stochastic deception attacks. In order to resist the malicious attack from attackers modifying the data in transmission module under a certain probability, an attack resistant controller, which has the ability to automatically adjust its own parameters according to external attacks, is designed for each Cohen-Grossberg neural subnet. An exponential adaptive quantitative controlling algorithm is proposed to synchronize Cohen-Grossberg neural network state, and a sufficient criterion is established to realize the synchronization error tends to zero under malicious attacks. Moreover, synchronization mode we study is the synchronization among Cohen-Grossberg neural subnets in multiplex networks. An example is presented to testify the validity of proposed theoretical framework.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号