首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper addresses the problem of fixed-time controller design for the second-order sliding mode (SOSM) dynamics with asymmetric output constraints. Based on the construction of a barrier Lyapunov function (BLF) and the technique of adding a power integrator, a fixed-time SOSM controller that can be used to handle the asymmetric output constraint issue is developed. A strict Lyapunov stability analysis shows that the developed SOSM controller guarantees that the sliding variable can converge to the origin within a fixed time that is irrelevant to the system initial conditions. Meanwhile, the system output will never invade the boundary of the preset asymmetric constrained area. Finally, two examples are given to verify the effectiveness and the feasibility of the proposed scheme.  相似文献   

2.
This paper investigates the problem of decentralized adaptive backstepping control for a class of large-scale stochastic nonlinear time-delay systems with asymmetric saturation actuators and output constraints. Firstly, the Gaussian error function is employed to represent a continuous differentiable asymmetric saturation nonlinearity, and barrier Lyapunov functions are designed to ensure that the output parameters are restricted. Secondly, the appropriate Lyapunov–Krasovskii functional and the property of hyperbolic tangent functions are used to deal with the unknown unmatched time-delay interactions, and the neural networks are employed to approximate the unknown nonlinearities. At last, based on Lyapunov stability theory, a decentralized adaptive neural control method is proposed, and the designed controller decreases the number of learning parameters. It is shown that the designed controller can ensure that all the closed-loop signals are 4-Moment (or 2 Moment) semi-globally uniformly ultimately bounded (SGUUB) and the tracking error converges to a small neighborhood of the origin. Two examples are provided to show the effectiveness of the proposed method.  相似文献   

3.
This paper studies a finite-time adaptive fuzzy control approach for a continuous stirred tank reactor (CSTR) with percent conversion constraint and uncertainties. This system is seen as a class of non-affine systems, and the system is resolved by the mean value theorem. Integral barrier Lyapunov functions (iBLFs) are used to handle output constraint in the design process of the finite-time adaptive controller. In order to calculate the time derivative of the virtual controller, a finite-time convergent differentiator (FTCD) is proposed, which can avert the issue of “explosion of complexity” in the backstepping design. Based on the finite time stability theory, the proposed approach not only ensures the closed-loop stability, but also guarantees tracking performance in a finite time. Finally, the simulation results on CSTR are showed to reveal the availability of the developed control scheme.  相似文献   

4.
This paper deals with the input–output finite-time stabilization problem for Markovian jump systems (MJSs) with incompletely known transition rates. An observer-based output feedback controller is constructed to study the input–output finite-time stability (IO-FTS) problem. By using the mode-dependent Lyapunov–krasovskii functional method, a sufficient criterion checking the IO-FTS problem is provided. Then, an observer and a corresponding state feedback controller for the individual subsystem are respectively designed to solve the input–output finite-time stabilization problem for the systems. Finally, a numerical example on the mass-spring system model is investigated to bring out the advantages of the control scheme proposed in this paper.  相似文献   

5.
In this paper, the finite-time stability and asynchronous resilient control for a class of Itô stochastic semi-Markov jump systems are studied. Firstly, the sufficient conditions of the finite-time stability for stochastic semi-Markovian jump systems are given. Secondly, the state feedback and observer-based finite-time asynchronous resilient controllers are designed. By multiple Lyapunov functions approach, the sufficient conditions for the existence of these two types of controllers which make the system stochastically stabilizable in finite time are given. Compared with nonresilient case, the existence of the resilient controller can eliminate the influence of the uncertainties and get better results. Finally, a numerical example is given to verify the effectiveness of our results.  相似文献   

6.
This article studies the neuroadaptive full-state constraints control problem for a class of electromagnetic active suspension systems (EASSs). First, the original constraint system with arbitrary initial values is transformed into a new constraint system with zero initial values by using the shift function method. Then, a new kind of cotangent-type nonlinear state-dependent transition function is constructed to solve the asymmetric time-varying full-state constraints control problem, which eliminates the limitation that the virtual controller needs to satisfy the feasibility conditions in the previous full-state constraints control based on Barrier Lyapunov Function (BLF) and Integral BLF. Furthermore, the neural networks (NNs) are used as nonlinear function approximators to deal with the unknown nonlinear dynamics of EASSs, a neuroadaptive full-state constraints control design method is proposed under the Backstepping recursive design framework. Finally, the effectiveness of the proposed method is verified by a simulation of EASSs with road disturbances.  相似文献   

7.
This paper investigates the finite-time trajectory tracking problem of a stratospheric airship subject to full-state constraint, input saturation, and disturbance. First, a disturbance observer is designed such that the estimation of disturbances can be accomplished within fixed time. Second, a Lyapunov barrier function-based finite-time controller is constructed to address the time-varying constraints of tracking errors, while a smooth filter is used to restrict the virtual signals and to generate their derivatives. Furthermore, novel auxiliary systems are proposed to compensate the possible saturation effect and to maintain the finite-time property. Comparative simulations are carried out to evaluate the effectiveness of the proposed controller.  相似文献   

8.
In this paper, the problem of the predefined-time tracking with time-varying output constraints (TVOC) is investigated for a class of nonlinear strict-feedback systems. First, the sufficient conditions for the studied problem are presented. Then, a recursive design algorithm of the controller is proposed by backstepping technique. A novel stabilizing function is constructed by adding a fractional term, which is capable of decreasing the asymmetric time-varying Barrier Lyapunov Function (BLF) to the origin within any desired settling time. After that, it is shown that under our proposed control, all the closed-loop signals are bounded, and the tracking error converges to zero within any desired settling time and remains zero thereafter without the violation of the output constraint. The settling time in this paper is not only independent of the design parameters, nor does it depend on the initial conditions, and can be set according to per our will. Finally, two examples are given to illustrate the effectiveness of the proposed method.  相似文献   

9.
In this paper, the problems of stochastic finite-time stability and stabilization of discrete-time positive Markov jump systems are investigated. To deal with time-varying delays and switching transition probability (STP), stochastic finite-time stability conditions are established under mode-dependent average dwell time (MDADT) switching signal by developing a stochastic copositive Lyapunov-Krasovskii functional approach. Then a dual-mode dependent output feedback controller is designed, thus stochastic finite-time stabilization is achieved based on linear programming technique. Finally, two examples are given to show the effectiveness of our results.  相似文献   

10.
The comprehensive effect of external disturbance, measurement delay, unmeasurable states and input saturation makes the difficulties and challenges for a HAGC system. In this paper, an adaptive fuzzy output feedback control scheme is designed for a HAGC system under the simultaneous consideration of those factors. At the first place, by state transformation technique, the dynamic model of a HAGC system is simply expressed as a strict feedback form, where measurement delay is converted into input delay. Then, an auxiliary system is employed to compensate for the effect of input delay. Furthermore, an asymmetric barrier Lyapunov function (BLF) is constructed to ensure the output error constraint requirement of thickness error and the fuzzy observer is established to solve unmeasurable states, unknown nonlinear functions at the same time. With the aid of backstepping method, adaptive fuzzy controller is developed to assure that the closed-loop system is semi-globally boundedness and the output error of thickness error doesn’t violate its constraint. At the end, compared simulations are carried out to verify the efficiency of the proposed control scheme.  相似文献   

11.
This paper is concerned with the finite-time stabilization for a class of stochastic BAM neural networks with parameter uncertainties. Compared with the previous references, a continuous stabilizator is designed for stabilizing the states of stochastic BAM neural networks in finite time. Based on the finite-time stability theorem of stochastic nonlinear systems, several sufficient conditions are proposed for guaranteeing the finite-time stability of the controlled neural networks in probability. Meanwhile, the gains of the finite-time controller could be designed by solving some linear matrix inequalities. Furthermore, for the stochastic BAM neural networks with uncertain parameters, the problem of robust finite-time stabilization could also be ensured as well. Finally, two numerical examples are given to illustrate the effectiveness of the obtained theoretical results.  相似文献   

12.
《Journal of The Franklin Institute》2022,359(18):10355-10391
In this paper, an adaptive neural finite-time tracking control is studied for a category of stochastic nonlinearly parameterized systems with multiple unknown control directions, time-varying input delay, and time-varying state delay. To this end, a novel criterion of semi-globally finite-time stability in probability (SGFSP) is proposed, in the sense of Lyapunov, for stochastic nonlinear systems with multiple unknown control directions. Secondly, a novel auxiliary system with finite-time convergence is presented to cope with the time-varying input delay, the appropriate Lyapunov Krasovskii functionals are utilized to compensate for the time-varying state delay, Nussbaum functions are exploited to identify multiple unknown control directions, and the neural networks (NNs) are applied to approximate the unknown functions of nonlinear parameters. Thirdly, the fraction dynamic surface control (FDSC) technique is embedded in the process of designing the controller, which not only the “explosion of complexity” problems are successfully avoided in traditional backstepping methods but also the command filter convergence can be obtained within a finite time to lead greatly improved for the response speed of command filter. Meanwhile, the error compensation mechanism is established to eliminate the errors of the command filter. Then, based on the proposed novel criterion, all closed-loop signals of the considered systems are SGPFS under the designed controller, and the tracking error can drive to a small neighborhood of the origin in a finite time. In the end, three simulation examples are applied to demonstrate the validity of the control method.  相似文献   

13.
This paper studies the finite-time stability and stabilization of linear discrete time-varying stochastic systems with multiplicative noise. Firstly, necessary and sufficient conditions for the finite-time stability are presented via a state transition matrix approach. Secondly, this paper also develops the Lyapunov function method to study the finite-time stability and stabilization of discrete time-varying stochastic systems based on matrix inequalities and linear matrix inequalities (LMIs) so as to Matlab LMI Toolbox can be used.The state transition matrix-based approach to study the finite-time stability of linear discrete time-varying stochastic systems is novel, and its advantage is that the state transition matrix can make full use of the system parameter informations, which can lead to less conservative results. We also use the Lyapunov function method to discuss the finite-time stability and stabilization, which is convenient to be used in practical computations. Finally, three numerical examples are given to illustrate the effectiveness of the proposed results.  相似文献   

14.
A continuous multivariable uniform finite-time output feedback reentry attitude control scheme is developed for Reusable Launch Vehicle (RLV) with both matched and mismatched disturbances. A novel finite-time controller is derived using the bi-limit homogeneous technique, which ensures that the attitude tracking can be achieved in a uniformly bounded convergence time from any initial states. A multivariable uniform finite-time observer is designed based on an arbitrary order robust sliding mode differentiator to estimate the unknown states and the external disturbances, simultaneously. Then, an output feedback control scheme is established through the combination of the developed controller and the observer. A rigorous proof of the uniform finite-time stability of the closed-loop system is presented using Lyapunov and homogeneous techniques. Finally, numerical simulation is provided to demonstrate the efficiency of the proposed scheme.  相似文献   

15.
This paper addresses the tracking control problem of TCP/AWM network systems in presence of nonresponsive data flows of category user datagram protocol (UDP) flows. Firstly, a modified network system model is established by a certain suitable variable transformation, and then a fuzzy logic system (FLS) emulator is used to approximate the nonlinear terms in the network dynamics representation system. Secondly, inspired by the idea of the prescribed performance control (PPC), a novel finite-time performance function (NFTPF) is proposed. In turn, an adaptive finite-time congestion control strategy is designed by compatible usage as appropriate of a barrier Lyapunov function (BLF), the backstepping control synthesis, and an event-triggered mechanism. The proposed control strategy can not only make the tracking error to satisfy the pre-assigned transient and steady-state performance, but also ensure that all the closed-loop signals remain semi-globally uniformly ultimately bounded (SGUUB). In addition, the designed congestion control strategy eliminates potential occurrence of Zeno behavior. A set of simulation results are presented to clarify the feasibility and effectiveness of proposed methodological approach and the designed congestion controller.  相似文献   

16.
This paper investigates the adaptive attitude tracking problem for the rigid satellite involving output constraint, input saturation, input time delay, and external disturbance by integrating barrier Lyapunov function (BLF) and prescribed performance control (PPC). In contrast to the existing approaches, the input delay is addressed by Pade approximation, and the actual control input concerning saturation is obtained by utilizing an auxiliary variable that simplifies the controller design with respect to mean value methods or Nussbaum function-based strategies. Due to the implementation of the BLF control, together with an interval notion-based PPC strategy, not only the system output but also the transformed error produced by PPC are constrained. An adaptive fuzzy controller is then constructed and the predesigned constraints for system output and the transformed error will not be violated. In addition, a smooth switch term is imported into the controller such that the finite time convergence for all error variables is guaranteed for a certain case while the singularity problem is avoided. Finally, simulations are provided to show the effectiveness and potential of the proposed new design techniques.  相似文献   

17.
A vibration control strategy is addressed for the three-dimensional vibration suppression of an Euler-Bernoulli beam (EBB) subject to asymmetric output constraints in this paper. A special piecewise barrier Lyapunov function candidate is provided to prevent the asymmetric output constraint violation, and a model-based boundary control (MBC) is developed subsequently to ensure the coupled vibration reduction. Moreover, considering the parameter uncertainties, an adaptive law is designed to estimate the uncertain parameter and to update the vibration controller. The main challenge of this work is to consider the asymmetric output constraint in a nonlinear and coupled infinite-dimensional system. Finally, numerical simulations are made to present the system performance under the proposed vibration controllers which maintain the output being restrained in the predefined scope.  相似文献   

18.
This paper studies the adaptive tracking control problem for a class of uncertain high-order fully actuated (HOFA) systems with actuator faults and full-state constraints. Firstly, we design a novel nonlinear transformation function (NTF) only related to state and constraint boundaries and capable of handling asymmetric time-varying constraints. With the designed function, we obtain an equivalent totally unconstrained HOFA model which is generally simpler to design controllers than first-order state-space model. Then, the adaptive fault-tolerant controller is constructed with the help of the HOFA approach. By applying the Lyapunov stability theory, it is rigorously proved that the output tracking error converges to zero asymptotically, other signals of the resulting closed-loop systems are bounded, and full-state constraints are not violated for all time. Finally, the simulation results verify the efficiency of the proposed control design method.  相似文献   

19.
This paper is concerned with the issue of finite-time boundedness of discrete-time uncertain interval type-2 fuzzy systems with time-varying delay and external disturbances via an observer-based reliable control strategy. According to the system output variable, a full-state observer that shares the same membership functions of the plant is constructed to estimate the unknown system states. In addition, a reliable controller subject to observer states and actuator faults is designed to formulate the closed-loop feedback control system, which does not share the same membership functions of the plant. Then, by constructing an appropriate Lyapunov–Krasovskii functional and using the finite-time stability theory, a new set of delay-dependent sufficient conditions guaranteeing the finite-time boundedness of the addressed system is established in the framework of linear matrix inequalities. Furthermore, the explicit expressions of gain matrices of the state observer and the reliable controller are given in terms of the established sufficient conditions. Finally, simulation results are presented to demonstrate the effectiveness of the obtained theoretical results.  相似文献   

20.
This paper deals with the problems of finite-time stability and stabilization for continuous-time switched positive linear time-delay systems under mode-dependent average dwell time switching signals. First, finite-time stability conditions are established by constructing an multiple piecewise copositive Lyapunov–Krasovskii functional. Then, finite-time stabilization is achieved by designing a state-feedback controller in the form of linear programming. This numerical construction approach proposed for controller cancels the restriction of the multiple piecewise copositive Lyapunov–Krasovskii functional on controllers, which can decrease the conservatism. Finally, two numerical examples are given to show the advantages of our methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号