首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study discusses the finite-time consensus for the second-order leader-following nonlinear multi-agent system with event-triggered communication. An event-triggered control protocol is established to achieve finite-time consensus, which can effectively avoid the Zeno behavior. Due to the unevenness of an event-triggered controller and the occurrence of the event-triggered condition, it is more challenging to analyze the event-triggered finite-time consensus. Based on the knowledge of graph theory, all agents can achieve finite-time consensus via the proposed event-triggered control protocol. Different from homogeneity, a Lyapunov function is constructed to obtain the settling time. Finally, a simulation example illustrates the validity of the main results.  相似文献   

2.
This article investigates the finite-time consensus problem for the attitude system of multiple spacecraft under directed graph, where the communication bandwidth constraint, inertia matrix uncertainties and external disturbances are considered. An event-triggered communication mechanism is developed to address the problem of communication bandwidth constraint. In this event-triggered mechanism, spacecraft sends their attitude information to their neighbors only when the given event is triggered. Furthermore, an adaptive law is designed to counteract the effect of inertia matrix uncertainties and external disturbances. Then, a finite-time attitude consensus tracking control scheme is proposed based on the event-triggered communication mechanism and adaptive law. The proposed control scheme can guarantee the finite-time stability and convergence of the multiple spacecraft systems and exclude the Zeno phenomenon. Finally, simulation results validate the effectiveness of the proposed control scheme.  相似文献   

3.
This paper researches the finite-time event-triggered containment control problem of multiple Euler–Lagrange systems (ELSs) with unknown control coefficients. To realize an accurate convergence time, the settling-time performance function is employed to ensures the steady-state and dynamic properties of the containment errors in the resulting system. Meanwhile, to handle unknown control coefficients, adaptive neural networks (ANNs) with an additional saturated term are designed, which removes the requirement of full rank control coefficients in traditional control methods. By establishing an event-triggered mechanism, a novel finite-time event-triggered containment control law is designed, which yields the semi-global practical finite-time stable (SGPFS) of the resulting closed-loop system without Zeno phenomenon according to the finite-time stability criterion. The effectiveness of the designed methodology is verified by simulation.  相似文献   

4.
The leader-following bipartite consensus of multi-agent systems (MASs) with matched uncertainty is investigated by using the fully distributed asynchronous edge-based event-triggered mechanism. Firstly, event-triggered mechanisms are constructed for each edge and the leader to decrease the consumption of system resources. The state feedback and output feedback control protocols are proposed, which do not depend on the global values of the communication graph. Secondly, sufficient conditions for the bipartite consensus of MASs are obtained by Lyapunov stability theory. Thirdly, the feasibility of the proposed event-triggered mechanisms is further verified by exclusion of Zeno phenomenon. Finally, the effectiveness of control protocol is illustrated by simulation.  相似文献   

5.
An event-triggered leader-following consensus problem for multi-agent systems with nonlinear dynamics was investigated in this study. The interaction topologies among the agents that we considered are randomly switched ones, governed by a semi-Markov process with partially unknown rates. By building the state error model between the leader and followers, the consensus problem is first converted into a stability problem. Moreover, an event-triggered transmission scheme based on sampling data was proposed to reduce communication redundancy. The consensus controller and event-triggered parameters can be designed effectively. By constructing a Lyapunov–Krasovskii functional (LKF) with a triple integral, the sufficient conditions required to guarantee the event-triggered consensus can be reached with respect to the linear matrix inequalities (LMIs). Ultimately, the validity of the theoretical results is demonstrated by a numerical example.  相似文献   

6.
This paper investigates the problem of event-triggered finite-time control for networked switched control systems with extended dissipative performance. Different from previous event-triggered results of switched systems, we propose a novel event-triggered method that allows more than once system switching over an event-triggered interval. By using a new Lyapunov function method, we discussed the finite-time extended dissipative analysis of the closed-loop networked switched systems. The controller gains and event-triggered parameters are obtained by solving some LMIs. Finally, numerical examples are given to illustrate the effectiveness of the proposed method.  相似文献   

7.
This paper investigates the bipartite leader-following consensus of second-order multi-agent systems with signed digraph topology. To significantly reduce the communication burden, an event-triggered control algorithm is proposed to solve the bipartite leader-following consensus problem, where a novel event-triggered function is designed. Under some mild assumptions on the network topology and node dynamics, a sufficient condition is derived using Lyapunov stability method and matrix theory to guarantee the bipartite consensus. In particular, it is shown that the continuous communication can be avoided and the Zeno-behavior can be excluded for the designed event-triggered algorithm. Numerical simulations are presented to illustrate the correctness of the theoretical analysis.  相似文献   

8.
This paper addresses the consensus problem for a class of multiple Euler-Lagrange systems, where agents communicate with neighbors under an event-triggered mechanism. Due to the more complex dynamical characteristics, the consensus problem of multiple Euler-Lagrange systems is more challenging than that of ordinary second-order multi-agent systems. In this study, we assume that the inertia matrix, the Coriolis and centrifugal term, and the gravitational torque are totally unknown, then a protocol is derived by integrating the Lyapunov functional method, neural network approximation and adaptive control techniques. In addition, the event-triggered mechanism effectively reduces the communication traffic, and the Zeno behavior is well excluded. By a demonstrative example, the effectiveness of the protocol is illustrated.  相似文献   

9.
The problem of event-triggered leader-following consensus control for semi-Markov multi-agent systems is investigated in this paper. A semi-Markov process is used to describe the sudden parameter changes between every agent. An adaptive event-triggered control strategy is proposed to make a balance between reducing unnecessary communication and meeting the required performance. A control protocol which can resist actuator faults is used to ensure the reliable leader-following consensus. By employing the Lyapunov–Krasovskii functional method, some sufficient conditions are provided to guarantee that the leader-following consensus can be achieved in mean-square sense. The consensus controller and the event-triggered parameter can be co-designed. Finally, the effectiveness of the proposed method is verified by a F-404 aircraft engine system.  相似文献   

10.
In this paper, we consider the robust finite-time consensus problem for second-order multi-agent systems (MASs) with limited sensing range and weak communication ability. As a stepping stone, a novel distributed finite-time sliding mode manifold is developed for MASs. Then, by combining artificial potential function technique with the presented sliding mode manifold, a robust distributed control scheme is proposed to enable the finite-time consensus of MASs while preserving the prescribed communication connectivity. Furthermore, the sampling frequency and implementation burden of the proposed controller can be reduced with resort to the event-triggered methodology. Finally, numerical examples are given to show the effectiveness of the proposed method.  相似文献   

11.
This paper investigates the observer-based consensus control for high-order nonlinear multi-agent systems (MASs) under denial-of-service (DoS) attacks. When the DoS attacks appear, the communication channels are destroyed, and the blocked information may ruin the consensus of MASs. A switched state observer is designed for the followers to observe the leader’s state whether the DoS attacks occur or not. Then, a dynamic event-triggered condition is proposed to reduce the consumption of communication resources. Moreover, an observer-based and dynamic event-triggered controller is formulated to achieve leader-following consensus through the back-stepping method. Additionally, the boundedness of all closed-loop signals is obtained based on the Lyapunov stability theory. Finally, the simulation results demonstrate the effectiveness of the presented control strategy under DoS attacks.  相似文献   

12.
In this paper, the leader-following consensus problem of general linear multi-agent systems without direct access to real-time state is investigated. A novel observer-based event-triggered tracking consensus control scheme is proposed. In the control scheme, a distributed observer is designed to estimate the relative full states, which are used in tracking consensus protocol to achieve overall consensus. And an event-triggered mechanism with estimated state-dependent event condition is adopted to update the control signals so as to reduce unnecessary data communication. Based on the Lyapunov theorem and graph theory, the proposed event-triggered control scheme is proved to implement the tracking consensus when real-time state cannot direct obtain. Moreover, such scheme can exclude Zeno-behavior. Finally, numerical simulations illustrate the effectiveness of the theoretical results.  相似文献   

13.
This paper investigates the event-based control for networked T-S fuzzy cascade control systems with quantization and cyber attacks. In order to solve the problem of limited communication resources, an event-triggered scheme and a quantization mechanism are adopted, which can effectively reduce the burden of communication and save the network resources of the system. By considering the influence of cyber attacks, a newly quantized T-S fuzzy model for networked cascade control systems (NCCSs) under the event-triggered scheme is established. By using the Lyapunov stability theory, sufficient conditions guaranteeing the asymptotical stability of networked T-S fuzzy cascade control systems are obtained. In addition, the controller gains are derived by solving a set of linear matrix inequalities. Finally, a numerical example is presented to verify the validity of the proposed method.  相似文献   

14.
This paper investigates the event-triggered finite-time H filtering for a class of continuous-time switched linear systems. Considering that the system may switch within an inter-event interval, the asynchronous problem is taken into account for the system and filter modes. By adopting the average dwell time (ADT) technique and multiple Lyapunov functions, new conditions are obtained to guarantee that the filtering error system is finite-time bounded with a prescribed disturbance attenuation performance. Further, the finite-time H filter together with event-triggered mechanism is co-designed for the switched linear systems. Finally, a numerical example is provided to demonstrate the effectiveness of the method proposed in this paper.  相似文献   

15.
This paper investigates the event-based asynchronous finite-time control for a class of cyber-physical switched systems under Denial-of-Service (DoS) attacks. Considering the attack’s characteristics, we put forward a novel attack-instant-constrained hybrid event-triggered scheme (HETS), which can not only contribute to reducing the network transmission overload, but also well descibe the network denial service behavior under attack interference. An asynchronous and ZOH-based controller is delicately constructed to mitigate the influence of DoS attacks and network-induced delay. A double-mode dependent Lyapunov–Krasovskii functional (LKF) is developed to set up some sufficient finite-time stability criteria for the concerned systems in view of the asynchronous switching effect. Finally, an application example of the urban railway system is offered to verify the proposed control algorithm.  相似文献   

16.
In this paper, the finite-time exponential consensus problem is addressed for a class of multi-agent systems against some disturbed factors, which include system uncertainties, communication perturbations, and actuator faults. All disturbed factors are supposed to be influenced by internal and external effects of systems. The internal effects are described in terms of dependency on the system states, while the external actions are restricted by constant bounds. To obtain the information of the rate of dependency on the states and constant bounds, an adaptive mechanism is designed to estimate the rate and bounds. Based on these estimates, a distributed adaptive sliding mode controller is constructed to eliminate the effects of those disturbed factors. Then exponential consensus of the closed-loop adaptive multi-agent system is achieved within a finite time based on Lyapunov stability theory. The efficiency of the developed adaptive consensus control strategy is verified by a coupled system with four F-18 aircrafts of decoupled longitudinal model.  相似文献   

17.
The practical finite-time control problem of uncertain nonlinear systems is investigated in this paper. To address the uncertain nonlinearities of the system, neural networks are introduced to approximate the lumped nonlinearities containing the system unknown functions. On the other hand, to alleviate the signal transmission pressure of the system, an improved event-triggered mechanism is presented to reduce the controller update frequency without degrading the control performance of the system. By using practical finite-time stability, it is obtained that the system tracking errors are practical finite-time stable without Zeno behavior. Finally, the effectiveness of the proposed method is verified by the simulation results of its application to a microwave plasma chemical vapor deposition (MPCVD) reactor system.  相似文献   

18.
In this paper, the finite-time stability and asynchronous resilient control for a class of Itô stochastic semi-Markov jump systems are studied. Firstly, the sufficient conditions of the finite-time stability for stochastic semi-Markovian jump systems are given. Secondly, the state feedback and observer-based finite-time asynchronous resilient controllers are designed. By multiple Lyapunov functions approach, the sufficient conditions for the existence of these two types of controllers which make the system stochastically stabilizable in finite time are given. Compared with nonresilient case, the existence of the resilient controller can eliminate the influence of the uncertainties and get better results. Finally, a numerical example is given to verify the effectiveness of our results.  相似文献   

19.
This work is concerned with the problem of reachable set synthesis for a class of singular systems with time-varying delay via the adaptive event-triggered scheme. Compared with the static event-triggered mechanism, the adaptive event-triggered mechanism can save the communication resources more effectively. By virtue of Lyapunov stability theory, sufficient conditions are given to guarantee the stability of the closed-loop system and that the reachable set of the resulting system is bounded by the obtained ellipsoid. In addition, by using linear matrix inequality technique and free-weighting matrix method, the weighting matrix of event-triggered condition and proportional-derivative (P-D) feedback controller gains are obtained. The effectiveness and superiority of the developed control approach are substantiated by a numerical example and two practical examples.  相似文献   

20.
This paper studies the event-based consensus problem of second-order multi-agent systems with actuator saturation under fixed topology and Markovian switching topologies. By a model transformation, the consensus problem is first converted into the stability problem of the error system. Using discontinuous Lyapunov functional approach, two sufficient conditions on the consensus are derived for second-order multi-agent systems with fixed topology and Markovian switching topologies, respectively. The discontinuous Lyapunov functions take full account of the characteristics of the sawtooth delay, and thus lead to a less conservative consensus criterion. It is shown that the consensus condition depends on the parameters of sampling period, Laplacian matrix, and event-triggered parameter. In addition, this paper provides an effective method to co-design both the consensus controller and the event-triggered parameter. Finally, two numerical examples are provided to illustrate the effectiveness and feasibility of the proposed algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号