首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study examined into the relationship between gender and students' misconceptions in science. Two different groups were treated with two different teaching strategies, namely, teaching strategy 1, which is basically didactic in nature, and teaching strategy 11, which incorporates students' misconceptions and applies the Generative Learning Model. Two groups of secondary three students (N=26,27; randomly sampled), underwent 6 weeks of instruction, with the respective strategies mentioned above. Each group consisted of male and female students, the numbers of which resulted from the grouping based on their academic achievements. A constructed and validated diagnostic instrument was used as a means to measure the effectiveness of these two teaching strategies. The findings showed that gender differences did not relate well to students' misconceptions in science. The implications of this finding are discussed.  相似文献   

2.
Pre‐service teachers face many challenges as they learn to teach in ways that are different from their own educational experiences. Pre‐service teachers often enter teacher education courses with pre‐conceptions about teaching and learning that may or may not be consistent with contemporary learning theory. To build on preservice teachers' prior knowledge, we need to identify the types of views they have when entering teacher education courses and the views they develop throughout these courses. The study reported here focuses specifically on preservice teachers' views of their own students' prior knowledge and the implications these views have on their understanding of the formative assessment process. Sixty‐one preservice teachers were studied from three sections of a science methods course. Results indicate that preservice teachers exhibited a limited number of views about students' prior knowledge. These views tended to privilege either academic or experience‐based concepts for different aspects of formative assessment, in contrast to contemporary perspectives on teaching for understanding. Rather than considering these views as misconceptions, it is argued that it is more useful to consider them as resources for further development of a more flexible concept of formative assessment. Four common views are discussed in detail and applied to science teacher education. © 2008 Wiley Periodicals, Inc. J Res Sci Teach 45: 497–523, 2008  相似文献   

3.
This research study explored pre-service teachers' (PST) reflections of their student teaching experiences through AHA moments. Participants included 37 pre-service teachers enrolled in mathematics and science student teaching seminars. Qualitative methods were used to analyze PSTs' written and verbal responses to questions regarding AHA experiences. Four themes emerged related to PSTs' AHA moments: a greater awareness of PSTs' identity as teachers, the importance of knowing their students, the realization of inconsistencies in their own and their students' beliefs, and the importance of anticipating students' misconceptions. The potential for using an AHA moment assignment, as presented here, appears to support reflection among PSTs; however, it is not clear these PSTs used judgments and analysis, both integral elements of the reflective process.  相似文献   

4.
Issues regarding scientific explanation have been of interest to philosophers from Pre-Socratic times. The notion of scientific explanation is of interest not only to philosophers, but also to science educators as is clearly evident in the emphasis given to K-12 students' construction of explanations in current national science education reform efforts. Nonetheless, there is a dearth of research on conceptualizing explanation in science education. Using a philosophically guided framework—the Nature of Scientific Explanation (NOSE) framework—the study aims to elucidate and compare college freshmen science students', secondary science teachers', and practicing scientists' scientific explanations and their views of scientific explanations. In particular, this study aims to: (1) analyze students', teachers', and scientists' scientific explanations; (2) explore the nuances about how freshman students, science teachers, and practicing scientists construct explanations; and (3) elucidate the criteria that participants use in analyzing scientific explanations. In two separate interviews, participants first constructed explanations of everyday scientific phenomena and then provided feedback on the explanations constructed by other participants. Major findings showed that, when analyzed using NOSE framework, participant scientists did significantly “better” than teachers and students. Our analysis revealed that scientists, teachers, and students share a lot of similarities in how they construct their explanations in science. However, they differ in some key dimensions. The present study highlighted the need articulated by many researchers in science education to understand additional aspects specific to scientific explanation. The present findings provide an initial analytical framework for examining students' and science teachers' scientific explanations.  相似文献   

5.
This study assessed the influence of a 3‐year professional development program on elementary teachers' views of nature of science (NOS), instructional practice to promote students' appropriate NOS views, and the influence of participants' instruction on elementary student NOS views. Using the VNOS‐B and associated interviews the researchers tracked the changes in NOS views of teacher participants throughout the professional development program. The teachers participated in explicit–reflective activities, embedded in a program that emphasized scientific inquiry and inquiry‐based instruction, to help them improve their own elementary students' views of NOS. Elementary students were interviewed using the VNOS‐D to track changes in their NOS views, using classroom observations to note teacher influences on student ideas. Analysis of the VNOS‐B and VNOS‐D showed that teachers and most grades of elementary students showed positive changes in their views of NOS. The teachers also improved in their science pedagogy, as evidenced by analysis of their teaching. Implications for teacher professional development programs are made. © 2006 Wiley Periodicals, Inc. J Res Sci Teach 44: 653–680, 2007  相似文献   

6.
Korean students have shown relatively little interest and confidence in learning science, despite being ranked in the top percentile in international evaluations of academic achievement in science such as the Trends in International Mathematics and Science Study. Although research indicates a positive relationship between student perceptions of science and their science learning, this area has not been sufficiently explored in Korea. Particularly, even though both students' perceptions of scientific practice and their understanding of the nature of science (NOS) are influenced by their science learning experiences at schools, little research examines how this perception, understanding, and experience are related to one another. This study aimed to uncover Korean students' perceptions of school scientific practice through exploring their drawings, writings, and responses to questionnaires. Participants were 500 Korean students in 3rd, 7th, and 10th grades who were asked to complete an open-ended questionnaire. The results indicated that Korean students typically viewed school scientific practices as experimental activities or listening to lecture; and that most participants held an insufficient understanding of the NOS. Overall, no significant relationship emerged between students' perceptions of school scientific practice and their understanding of the NOS. Our findings highlight the need to help both teachers and students understand the potential breadth of school scientific practices, beyond simple ‘activity mania.’ This study also suggests that teachers must balance implicit and explicit instructional approaches to teaching about the NOS through scientific practices in school science contexts.  相似文献   

7.
It is now widely acknowledged that students' misconceptions in science impede their meaningful understanding of and good performance in the subject. A search in the literature reveals that textbooks, reference books, teachers, language, cultural beliefs and practices are some principal sources of high school students' misconceptions of many science concepts in biology. In this paper, some misconceptions students hold in biology, which originate from each of these sources, are reviewed using cognate studies and published documents. The implications of the conclusions from the review for biology education are addressed.  相似文献   

8.
Educational researchers and teachers are well aware that misconceptions—erroneous ideas that differ from the scientifically accepted ones—are very common amongst students. Daily experiences, creative and perceptive thinking and science textbooks give rise to students' misconceptions which lead them to draw erroneous conclusions that become strongly attached to their views and somehow affect subsequent learning. The main scope of this study was to understand what students consider a mineral to be and why. Therefore, the goals were (1) to identify eleventh-grade students' misconceptions about the mineral concept; (2) to understand which variables (gender, parents' education level and attitude towards science) influenced students' conceptions; and (3) to create teaching tools for the prevention of misconceptions. In order to achieve these goals, a diagnostic instrument (DI), constituted of a two-tier diagnostic test and a Science Attitude Questionnaire, was developed to be used with a sample of 89 twelfth-grade students from five schools located in central Portugal. As far as we know, this is the first DI developed for the analysis of misconceptions about the mineral concept. Data analysis allows us to conclude that students had serious difficulties in understanding the mineral concept, having easily formed misconceptions. The variables gender and parents' education level influence certain students' conceptions. This study provides a valuable basis for reflection on teaching and learning strategies, especially on this particular theme.  相似文献   

9.
10.
Past studies have explored the role of student science notebooks in supporting students' developing science understandings. Yet scant research has investigated science notebook use with students who are learning science in a language they are working to master. To explore how student science notebook use is co-constructed in interaction among students and teachers, this study examined plurilingual students' interactions with open-ended science notebooks during an inquiry science unit on condensation and evaporation. Grounded in theoretical views of the notebook as a semiotic social space, multimodal interaction analysis facilitated examination of the ways students drew upon the space afforded by the notebook as they constructed explanations of their understandings. Cross-group comparison of three focal groups led to multiple assertions regarding the use of science notebooks with plurilingual students. First, the notebook supported student-determined paths of resemiotization as students employed multiple communicative resources to express science understandings. Second, notebooks provided spaces for students to draw upon diverse language resources and as a bridge in time across multiple inquiry sessions. Third, representations in notebooks were leveraged by both students and teachers to access and deepen conceptual conversations. Lastly, students' interactions over time revealed multiple epistemological orientations in students' use of the notebook space. These findings point to the benefits of open-ended science notebooks use with plurilingual students, and a consideration of the ways they are used in interaction in science instruction.  相似文献   

11.
This article reports a study into how mobile phones could be used to enhance teaching and learning in secondary school science. It describes four lessons devised by groups of Sri Lankan teachers all of which centred on the use of the mobile phone cameras rather than their communication functions. A qualitative methodological approach was used to analyse data collected from the teachers' planning, observations of the lessons and subsequent interviews with selected pupils. The results show that using images and video captured on mobile phones supported the teachers not only in bringing the outside world into the classroom but also in delivering instructions, in assessing students' learning and in correcting students' misconceptions. In these instances, the way the images from the mobile phone cameras supported students' learning is explained using a variety of approaches to understand how images support learning.  相似文献   

12.
How to improve students' understanding of energy transformation and conservation remains one of the main challenges of energy teaching. To address this challenge, we developed a new teaching strategy suited to high school based on history and philosophy of science (HPS). It involves five key ingredients: study and reproduction of Joule's paddle-wheel experiment, introduction of Rankine's definition, study of a historical text of Joule, use of an “ID card of energy,” and early introduction and multiple application of the principle of energy conservation. This strategy was built and implemented in the frame of a collaborative and iterative work involving researchers and teachers. We examined the effects of this HPS-based teaching strategy on students' understanding of energy. We used a quantitative method based on pre- and post-tests (N = 95/87) completed by a qualitative analysis using both video recordings of classroom activities and videos produced by students during one of the teaching sequences. The outcomes show that the teaching strategy had an overall positive impact on students' learning of energy: in particular, Joule's paddle-wheel experiment seems to favor their understanding of the notion of energy transformation, while the early introduction and multiple application of the conservation principle appears as a relevant option to facilitate its mastering. This study illustrates how HPS might actually be introduced in classrooms and brings to light its usefulness for building new science teaching strategies.  相似文献   

13.
14.
Contextualizing science instruction involves utilizing students' prior knowledge and everyday experiences as a catalyst for understanding challenging science concepts. This study of two middle school science classrooms examined how students utilized the contextualizing aspects of project‐based instruction and its relationship to their science learning. Observations of focus students' participation during instruction were described in terms of a contextualizing score for their use of the project features to support their learning. Pre/posttests were administered and students' final artifacts were collected and evaluated. The results of these assessments were compared with students' contextualizing scores, demonstrating a strong positive correlation between them. These findings provide evidence to support claims of contextualizing instruction as a means to facilitate student learning, and point toward future consideration of this instructional method in broader research studies and the design of science learning environments. © 2007 Wiley Periodicals, Inc. J Res Sci Teach 45: 79–100, 2008  相似文献   

15.
This study aimed to assess grade 10 Turkish students' and science teachers' conceptions of nature of science (NOS) and whether these conceptions were related to selected variables. These variables included participants' gender, geographical region, and the socioeconomic status (SES) of their city and region; teacher disciplinary background, years of teaching experience, graduate degree, and type of teacher training program; and student household SES and parents' educational level. A stratified sampling approach was used to generate a representative national sample comprising 2,087 students and 378 science teachers. After establishing their validity in the Turkish context, participants were administered a questionnaire comprising 14 modified “Views on Science‐Technology‐Society” (VOSTS) items to assess their views of certain aspects of NOS. A total of 2,020 students (97%) and 362 teachers (96%) completed the questionnaire. Participant responses were categorized as “naïve,” “have merit,” or “informed,” and the frequency distributions for these responses were compared for various groupings of participants. The majority of participants held naïve views of a majority of the target NOS aspects. Teacher views were mostly similar to those of their students. Teacher and student views of some NOS aspects were related to some of the target variables. These included teacher graduate degree and geographical region, and student household SES, parent education, and SES of their city and geographical region. The relationship between student NOS views and enhanced economic and educational capitals of their households, as well as the SES status of their cities and geographical regions point to significant cultural (specifically Western) and intellectual underpinnings of understandings about NOS. © 2008 Wiley Periodicals, Inc. J Res Sci Teach 45: 1083–1112, 2008  相似文献   

16.
Current research indicates that student engagement in scientific argumentation can foster a better understanding of the concepts and the processes of science. Yet opportunities for students to participate in authentic argumentation inside the science classroom are rare. There also is little known about science teachers' understandings of argumentation, their ability to participate in this complex practice, or their views about using argumentation as part of the teaching and learning of science. In this study, the researchers used a cognitive appraisal interview to examine how 30 secondary science teachers evaluate alternative explanations, generate an argument to support a specific explanation, and investigate their views about engaging students in argumentation. The analysis of the teachers' comments and actions during the interview indicates that these teachers relied primarily on their prior content knowledge to evaluate the validity of an explanation rather than using available data. Although some of the teachers included data and reasoning in their arguments, most of the teachers crafted an argument that simply expanded on a chosen explanation but provided no real support for it. The teachers also mentioned multiple barriers to the integration of argumentation into the teaching and learning of science, primarily related to their perceptions of students' ability levels, even though all of these teachers viewed argumentation as a way to help students understand science. © 2012 Wiley Periodicals, Inc. J Res Sci Teach 49: 1122–1148, 2012  相似文献   

17.
This study (a) assessed the influence of three history of science (HOS) courses on college students' and preservice science teachers' conceptions of nature of science (NOS), (b) examined whether participants who entered the investigated courses with a conceptual framework consistent with contemporary NOS views achieved more elaborate NOS understandings, and (c) explored the aspects of the participant HOS courses that rendered them more “effective” in influencing students' views. Participants were 166 undergraduate and graduate students and 15 preservice secondary science teachers. An open‐ended questionnaire in conjunction with individual interviews, was used to assess participants' pre‐ and postinstruction NOS views. Almost all participants held inadequate views of several NOS aspects at the outset of the study. Very few and limited changes in participants' views were evident at the conclusion of the courses. Change was evident in the views of relatively more participants, especially preservice science teachers, who entered the HOS courses with frameworks that were somewhat consistent with current NOS views. Moreover, explicitly addressing certain NOS aspects rendered the HOS courses relatively more effective in enhancing participants' NOS views. The results of this study do not lend empirical support to the intuitively appealing assumption held by many science educators that coursework in HOS will necessarily enhance students' and preservice science teachers' NOS views. However, explicitly addressing specific NOS aspects might enhance the effectiveness of HOS courses in this regard. Moreover, the study suggests that exposing preservice science teachers to explicit NOS instruction in science methods courses prior to their enrollment in HOS courses might increase the likelihood that their NOS views will be changed or enriched as a result of their experiences with HOS. © 2000 John Wiley & Sons, Inc. J Res Sci Teach 37: 1057–1095, 2000  相似文献   

18.
The development of three-dimensional learning among all K-12 student demographics remains a prominent goal for the field of science education. However, substantial research in science teacher education for urban populations showcases hurdles to overcome in order to achieve this goal, particularly for elementary teachers. Research shows that urban elementary teachers are often ill-prepared to develop a type of science pedagogy responsive to students' learning needs. The fidelity of such pedagogies that these teachers adhere to when trying to implement such a requested content–relationality between these populations and how their local contexts can be used as sites to learn science in relevant ways are often not fully realized, as well. Given that science achievement gaps exhibit racial disparities starting in primary grades and attitudes toward science have been shown to affect academic achievement and motivation, we argue that one way to ameliorate, in at least an incremental way, this disparity is to design novel learning experiences to prime students to see the relevancy of science in their local contexts before such three-dimensional designed learning is set to occur. In this research, we leveraged the immersive nature of Virtual Reality 360 videos and present a design-based research iteration testing how this novel technologically enhanced learning experience may have influenced close to 400 urban elementary students' attitudes toward science around those attitudes labeled as “behavioral beliefs” by the field. Using a concurrent, convergent mixed-methods design with a two-way multivariate analysis of covariance quantitative data set triangulated with students' qualitative self-reports that were transformed into quantitative preponderances in graphic form, the data support that our design iteration emphasizing the importance of context as a design focus can prime students who struggle to see science as relevant to change their attitudes. Implications are discussed around relationality, novel technological affordances, and the use of local contexts as learning resources.  相似文献   

19.
The main purpose of this study was to concurrently investigate Taiwanese high-school students' and their science teachers' conceptions of learning science (COLS) and conceptions of science assessment (COSA). A total of 1,048 Taiwanese high-school students and their 59 science teachers were invited to fill out two questionnaires assessing their COSA and COLS. The main results indicated that, first, although a handful of different patterns occurred, students and teachers were found to have similar COLS–COSA patterns. In general, students and teachers with COSA as reproducing knowledge and rehearsing tended to possess lower-level COLS, such as learning science as memorizing, testing, and calculating and practicing. In contrast, if students and teachers viewed science assessment as improving learning and problem-solving, they would be prone to regard science learning as increase of knowledge, applying, and understanding and seeing in a new way. However, the students' conceptions did not align with those of the teachers' in certain aspects. The students tended to regard science learning and assessment at a superficial level (COLS as ‘memorizing’, ‘testing’, and ‘calculating and practicing’ and COSA as ‘reproducing knowledge’), while the teachers’ conceptions were at a more sophisticated level (COLS as ‘application’ and ‘understanding and seeing in a new way’ and COSA as ‘improving learning’). It is evident that a dissonance exists between the students' and teachers' COLS and COSA. Based on the results, practical implications and suggestions for future research are discussed.  相似文献   

20.
In the study described in this article a questionnaire was employed that can be used to assess students' and teachers' perceptions of science teachers' interpersonal communication behaviors in their classroom learning environments. The Teacher Communication Behavior Questionnaire (TCBQ) has five scales: Challenging, Encouragement and Praise, Non‐Verbal Support, Understanding and Friendly, and Controlling. The TCBQ was used with a large sample of secondary science students in Taiwan, which provided additional validation data for the TCBQ for use in Taiwan and cross‐validation data for its use in English‐speaking countries. Girls perceived their teachers as more understanding and friendly than did boys, and teachers in biological science classrooms exhibited more favorable behavior toward their students than did those in physical science classrooms. Differences were also noted between the perceptions of the students and their teachers. Positive relationships were found between students' perceptions of their teachers' communication behaviors and their attitudes toward science. Students' cognitive achievement scores were higher when students perceived their teacher as using more challenging questions, as giving more nonverbal support, and as being more understanding and friendly. The development of both teacher and student versions of the TCBQ enhances the possibility of the use of the instrument by teachers. © 2002 John Wiley & Sons, Inc. J Res Sci Teach 39: 63–78, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号