首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 703 毫秒
1.
利用传输矩阵法理论,对双正、双负和单负介质构成的对称结构光子晶体能带谱进行了对比研究,结果得到:由不同介质材料构成的对称结构光子晶体,其能带谱存在很大的差异,其中以单负介质光子晶体禁带宽度最宽,双负介质光子晶体次之,双正介质光子晶体的禁带宽度为最窄;当周期数变大时,光子晶体禁带中的透射峰带宽均逐渐变小并趋于尖锐,且以单负介质的光子晶体透射峰带宽减小的速度为最快;介质厚度dB对单负介质光子晶体的调制效果要优于对双正和双负光子晶体的调制效果;入射角对单负介质光子晶体能带谱的影响要大于对双正和双负介质光子晶体.不同介质材料构成的对称结构光子晶体的这些光传输特性,可为镜像对称结构光子晶体的设计以及窄带或是宽带光子晶体光学滤波器件等提供理论指导.  相似文献   

2.
介质厚度对一维三元结构光子晶体透射谱的影响   总被引:1,自引:0,他引:1  
用传输矩阵法研究各介质层厚度对一维三元光子晶体(CBA)m(ABC)m透射谱的影响,结果发现:在很宽的禁带范围内,仅出现一条透射峰,且随着m的增加透射峰越加精细;随着A、B、C各介质层厚度的增加,透射峰均向长波方向移动,三者厚度同时增加时透射峰移动速度最快,单层厚度增加时,增加C层厚度透射峰移动最快,B层次之,A层最慢;随着各层介质厚度增加,光子禁带向长波方向移动,各层厚度同时增加时主禁带移动的速度最快,单层厚度增加时,移动速度快慢依次为C层、B层、A层。随着各层介质厚度同时增加或是C、A单层增加,禁带加宽,但B层厚度增加禁带反而变窄。一维三元结构光子晶体的这些特性,为光子晶体设计不同频率范围的光学滤波器、反射器等提供指导。  相似文献   

3.
采用传输矩阵法,通过编程计算模拟双负材料光子晶体(AB)mBCB(BA)m的透射谱,研究介质光学厚度对光子晶体带宽的调制机制,结果发现:当分别增大A或B介质层的光学厚度时,光子晶体的透射能带谱均向低频方向移动,且透射峰带宽均逐渐变窄,但透射峰的透射率保持100%不变;当C介质层光学厚度按负值减小时,光子晶体的透射能带谱则向高频方向移动,而透射峰的带宽也变窄且透射率保持100%;相对而言,B介质层光学厚度对带宽的调制最灵敏,A层次之,而C层最弱。介质光学厚度对双负材料一维光子晶体透射峰带宽的调制功能,为设计不同频率或波长范围的窄带滤波器、光开关等光学器件提供理论基础和现实指导意义。  相似文献   

4.
利用传输矩阵法,通过数值模拟,研究周期不对称度、介质折射率等因素对双负材料光子晶体(AB)m1BCB(BA)m2能带性能的影响,结果发现:当周期不对称度△m=0,且m1=m2=m时,随着周期数m的增大,禁带中心单透射峰带宽逐渐变窄,禁带中心形成一条透射率为100%的超窄透射峰;当周期不对称度△m≠0,且△m逐渐增大时,禁带中心透射峰透射率逐渐降低,且禁带宽度越来越窄;当介质A折射率nA增大时,禁带宽度逐渐变窄,禁带中的透射峰带宽逐渐变宽;而介质B折射率nB逐渐增大时,禁带中心透射峰带宽逐渐变窄,禁带带宽逐渐变宽;当介质C折射率nC随着负值减小时,禁带宽度几乎保持不变,但禁带中透射峰带宽明显变窄。影响双负材料光子晶体能带性能的规律对设计诸如新型光学滤波器、光开关和全反射镜等光学器件有一定参考价值。  相似文献   

5.
利用传输矩阵法理论,通过数值计算、模拟的方式,研究优化光子晶体量子阱透射能带结构的方法,结果表明:适当调整光子晶体的周期排列结构时,可拓宽光量子阱阱层光子晶体的能带,即可扩大光量子阱透射谱分布的频率范围;当组成光子晶体介质由双正材料置换成双负材料时,光量子阱阱层光子晶体的多能带结构合并成很宽且完整的单能带结构,即可使光量子阱透射谱实现连续频率分布的多通道滤波功能.光子晶体排列结构和不同介质对光量子阱透射能带结构的优化效果不同,对光子晶体量子阱的理论研究、实际设计和应用等,均有积极的指导作用.  相似文献   

6.
利用传输矩阵法理论,通过数值计算模拟的方法,研究各种结构参数对光子晶体滤波器滤波品质的调制机制,结果表明:对于双正介质光子晶体,当光子晶体或光子晶体量子阱的排列周期数越大,或基元介质高折射率介质的折射率越大,光子晶体滤波器的滤波品质越高;对于单负介质光子晶体,当光子晶体介质层厚度越大,光子晶体滤波器滤波品质也越高;当双正介质光子晶体的介质换成双负介质时,光子晶体滤波器的滤波品质会降低,但随着双负介质折射率的负值增加,滤波品质会上升。光子晶体或光子晶体量子阱结构参数对滤波器品质的调制机制,为设计光子晶体滤波器以及形成其有效调制机制提供理论参考。  相似文献   

7.
用传输矩阵法研究对称结构一维三元光子晶体(ABC)n(CBA)n的透射谱,结果发现:随着n的增加,出现的单条透射峰越加锋锐;随着光入射角的增大,在TE偏振模情况下,窄透射峰向高频方向移动,在TM偏振模情况下向低频方向移动,而两种情况下的主禁带范围保持不变.这些传输特性为光子晶体设计和新型光学器件研制提供了有益参考.  相似文献   

8.
具有复介电常量对称结构一维三元光子晶体透射谱的研究   总被引:1,自引:0,他引:1  
利用传输矩阵法理论,研究含复介电常量对称结构一维三元光子晶体的光传输特性。结果表明:当各层介质的介电常量均为实数时,在较宽的禁带范围内出现一条透射率为100%的透射峰;当介质介电常量含正虚部时,禁带中的透射峰出现透射衰减现象,若含有负虚部时,透射峰则出现透射增益现象;随着复介电正虚部的增大,透射峰出现单调衰减,而随着复介电负虚部绝对值的增大,透射增益达到一极大值,随后减小;在不同介质层引入复介电常量引起透射峰的透射率衰减或增益强度不同。这些特性对设计光放大器、衰减器等新型光学器件有一定的参考价值。  相似文献   

9.
用传输矩阵法研究一维异质结构光子晶体(AB)m(BC)nA(BC)n(BA)m的透射能带谱,结果发现:当光垂直入射到光子晶体时,在较宽的禁带范围内出现孪生透射峰,且结构周期对孪生透射峰有很好的调制功能,随着周期数n的增大,孪生透射峰的数目增多,随着周期数m的增大,各透射峰越来越锋锐;孪生透射峰对介质厚度的变化都很敏感,随着介质A厚度的增大,孪生透射峰均出现明显的红移,并逐渐演变为振荡峰,导致孪生透射峰消失,不利于双通道光滤波的调制,而随着介质B厚度的增大,孪生透射峰向长波方向移动,但透射峰的透射率及其宽度没有明显变化。该异质结构光子晶体的光传输特性,可为多系双通道光子晶体滤波器件的设计提供指导意义。  相似文献   

10.
利用液晶热光效应的温度特性,并通过传输矩阵法理论,研究了液晶缺陷一维光子晶体的光传输特性。结果表明,当无液晶缺陷时,在较宽的禁带范围出现一条缺陷模,当在光子晶体中引入液晶缺陷时,禁带边缘通带的透射率大幅下降,同时禁带中增加了一条液晶缺陷模,形成双缺陷模特征,且透射率均为100%;随着液晶材料温度的增大,液晶缺陷模的位置向短波方向移动,而随着液晶层厚度的变化其位置向长波方向移动,但右边空位缺陷模的位置并未受到液晶温度和厚度的影响。液晶材料对光子晶体透射谱的这种调制作用,为设计可调谐光子晶体光学器件提供指导意义。  相似文献   

11.
用传输矩阵法研究多周期一维光子晶体(CgAlCm)n的透射谱,结果发现:在2 200 nm(频率-波长)位置出现一条宽的透射带,透射带两边对称分布着两组相同特点的透射峰,各组透射峰的条数均等于n-1条;随着周期数n的增大,宽透射带上端出现振荡,并产生数目与n-1值对应的振荡峰,随n的增大,两组透射峰数目分别随n-1值增加的同时宽度会越来狭窄;随着周期数g、m的增大,透射带和左右两侧的两组透射峰均向右移动,且透射带和透射峰会越来越窄;随着周期数l或g、l、m或g、l、m、n的增大,透射带和左右两侧的两组透射峰所分布的频率范围均扩大,并向长波(低频)方向移动,同时透射带上端的振荡加剧,振荡峰数目与各周期数有关,当移动和振荡到一种程度后,透射带与两侧透射峰合并成单组透射峰,而且当g、l、m、n同时增大时合并现象最明显。多周期一维光子晶体透射谱随周期数变化的这些特性,为光子晶体设计可调性多通道宽带、窄带光学滤波器件提供指导。  相似文献   

12.
采用基于密度泛函理论的第一性原理计算了金红石结构SnO2的电子结构和光学特性.在不同的截断能下优化SnO2晶胞得:Ecut取380eV最合适,此时a=b=0.4900nm,c=0.3285nm,Eg=1.258eV.通过分析其复介电函数、反射谱、吸收谱以及损失函数等谱线的峰值,可知这些峰值与电子在价带导带间的跃迁有关.计算的光学特性与能带结构态密度吻合很好,为SnO2在光电领域的设计与应用提供了理论依据.  相似文献   

13.
采用时域有限差分技术,分析非线性光子晶体点缺陷不对称结构的单向透射特性。研究发现:当光波从两个不同方向入射,耦合进入缺陷的电场能量不同,入射波存在单向透射特性,从而透射率在跳跃点处的阈值功率不同;此外,入射波在跳跃点处的最大透射率值与入射方向无关。进一步采用耦合模理论验证所得结果,所得结论与数值模拟结果一致。当光波从这种不对称的点缺陷结构两端入射时,所得透射对比度存在一个上限。  相似文献   

14.
基于ZnO二维无序介质的三角形排列结构模型,采用时域有限差分法研究了光在ZnO二维无序介质中的光学特性.结果表明,无序介质中光场空间分布呈现局域化特征.计算了局域化较强处的透射谱,发现探测点在ZnO增益范围内存在多个透射共振峰.讨论了共振峰对应的局域模的光场分布,得到不同局域模光场具有不同的空间分布.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号