首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, the development and experimental validation of a novel double two-loop nonlinear controller based on adaptive neural networks for a quadrotor are presented. The proposed controller has a two-loop structure: an outer loop for position control and an inner loop for attitude control. Similarly, both position and orientation controllers also have a two-loop design with an adaptive neural network in each inner loop. The output weight matrices of the neural networks are updated online through adaptation laws obtained from a rigorous error convergence analysis. Thus, a training stage is unnecessary prior to the neural network implementation. Additionally, an integral action is included in the controller to cope with constant disturbances. The error convergence analysis guarantees the achievement of the trajectory tracking task and the boundedness of the output weight matrix estimation errors. The proposed scheme is designed such that an accurate knowledge of the quadrotor parameters is not needed. A comparison against the proposed controller and two other well-known schemes is presented. The obtained results showed the functionality of the proposed controller and demonstrated robustness to parametric uncertainty.  相似文献   

2.
This paper is concerned with the problem of adaptive disturbance attenuation for a class of nonlinear systems. The traditional adaptive methods are almost impossible to compensate the time-varying unknown disturbance by designing parameter adaptive laws without a priori knowledge about the bounds of external disturbances. To solve the problem, a new strategy is proposed by constructing an augmented system where the external disturbance is considered as another component of the augmented state vector. Based on this, a double-gain nonlinear observer is employed to estimate the state of the augmented nonlinear system. Further, an output feedback control strategy is designed, and it is proved that the proposed strategy ensures that all the signals are bounded and the tracking error exponentially converges to an adjustable compact set. Finally, an example is performed to demonstrate the validity of the proposed scheme.  相似文献   

3.
A significant concern with statistical fault diagnosis is the large number of false alarms caused by the smearing effect. Although the reconstruction-based approach effectively solves this problem, most of them only focus on linear rather than nonlinear systems. In the present work, a generic reconstruction-based auto-associative neural network (GRBAANN) is proposed that uses the reconstruction-based approach to isolate simple and complex faults for nonlinear systems. Nevertheless, in GRBAANN, it is challenging to acquire a trivial solution for the reconstruction-based index, which is equivalent to a complex vector fixed-point problem. In this regard, the Steffensen method is employed to deal with this problem with an accelerated iterative process, which is appropriate for both single and multiple variable faults. The variable selection procedure is time-consuming but imperative for reconstruction-based approaches, with no exception to the proposed method. In order to ensure the real-time diagnosis for large-scale systems, the Sequential floating forward selection method with memory is proposed to minimize the computation time of the variable selection procedure. The effectiveness of the proposed GRBAANN scheme is illustrated through a validation example and an industrial example. Comparisons with the state-of-art methods are also presented.  相似文献   

4.
It is very important to create the conference programs correctly in terms of timing and content by preventing problems such as being of articles that do not have a common topic with each other in the same sessions, the parallel of the sessions containing articles on the same topic. It greatly affects the efficiency of conference for participants. Currently, conference programs are organized manually. Considering the conference scope and the number of articles in that conference, it is a difficult and time-consuming process. In this study, an automatic solution to this problem is presented. The use of the SBERT method is provided a more accurate calculation of article similarities compared to baseline methods and is increased the success of other stages. Unlike classical clustering methods, an approach that clusters in such a way that there are equal numbers of data points in the clusters is proposed. In order to find the topic of the clusters determined as sessions, a topic determination approach is proposed that takes into account both keyword and article content similarities. Furthermore, with the proposed approach for session scheduling, the conference program has been planned more effectively by considering the parallel sessions. The ICTAI conference has been chosen to test the proposed approach. The proposed program is compared with both the real program and the programs created using Word2vec and Glove methods. With the proposed program, 10% improvement is achieved in terms of session similarity. In addition, parallel sessions are better planned with no conflicts compared to the real program.  相似文献   

5.
In the paper, a control algorithm for output regulation problem of nonlinear pure-feedback systems with unknown functions is proposed. The main contributions of the proposed method are not only to avoid Assumptions of unknown functions, but also adopt a non-backstepping control scheme. First, a high-gain state observer with disturbance signals is designed based on the new system that has been converted. Second, an internal model with the observer state is established. Finally, based on Lyapunov analysis and the neural network approximation theory, the control algorithm is proposed to ensure that all the signals of the closed-loop system are the semi-globally uniformly ultimately bounded, and the tracking error converges to a small neighborhood of the origin. Three simulation studies are worked out to show the effectiveness of the proposed approach.  相似文献   

6.
7.
In this paper, the fault diagnosis (FD) and fault-tolerant tracking control (FTTC) problem for a class of discrete-time systems with faults and delays in actuator and measurement is investigated. In the first step, a discrete delay-free transformation approach is introduced for an constructed augmented system such that the two-point-boundary-value (TPBV) problem with advanced and delayed items can be avoided. Then, the optimal fault-tolerant tracking controller (OFTTC) is proposed with respect to an equivalent reformed quadratic performance index. Moreover, by using the real-time system output rather than the residual errors, a reduced-order-observer-based fault diagnoser for the augmented system is designed to diagnose faults in actuator and measurement, and solve the physically unrealizable problem of proposed OFTTC. Finally, the effectiveness of the proposed fault diagnoser and OFTTC is illustrated by a realistic design example for industrial electric heater.  相似文献   

8.
This paper focuses on designing a leader-following event-triggered control scheme for a category of multi-agent systems with nonlinear dynamics and signed graph topology. First, an event-triggered controller is proposed for each agent to achieve fixed-time bipartite consensus. Then, it is shown that the Zeno-behavior is rejected in the proposed algorithm. To avoid intensive chattering due to the discontinuous controller, the control protocol is improved by estimating the sign function. Moreover, a triggering function is proposed which avoids continuous communication in the event-based strategy. Finally, numerical simulations are given to show the accuracy of the theoretical results.  相似文献   

9.
This paper considers the output feedback sliding-mode control for an uncertain linear system with unstable zeros. Based on a frequency shaping design, a dynamic-gain observer is used for state estimation of an uncertain system. This paper confirms that (1) state estimation is globally stable in a practical sense, (2) the resultant error can be arbitrarily small with respect to the system uncertainties, and (3) the proposed sliding-mode control can drive the uncertain system state into an arbitrarily small residual set around the origin, such that the size of residual set is controlled by the filter design. Moreover, the proposed control design is inherently robust to measurement noise; the effect of measurement noise can effectively be attenuated without any additional work.  相似文献   

10.
In this paper, the task of text segmentation is approached from a topic modeling perspective. We investigate the use of two unsupervised topic models, latent Dirichlet allocation (LDA) and multinomial mixture (MM), to segment a text into semantically coherent parts. The proposed topic model based approaches consistently outperform a standard baseline method on several datasets. A major benefit of the proposed LDA based approach is that along with the segment boundaries, it outputs the topic distribution associated with each segment. This information is of potential use in applications such as segment retrieval and discourse analysis. However, the proposed approaches, especially the LDA based method, have high computational requirements. Based on an analysis of the dynamic programming (DP) algorithm typically used for segmentation, we suggest a modification to DP that dramatically speeds up the process with no loss in performance. The proposed modification to the DP algorithm is not specific to the topic models only; it is applicable to all the algorithms that use DP for the task of text segmentation.  相似文献   

11.
This paper aims at providing new design approaches for positive observers of discrete-time positive linear systems based on a construction method of linear copositive Lyapunov function for positive systems. First, an efficient positive observer design approach is proposed by using linear programming such that the observer error system is exponentially stable. Furthermore, an interval observer design is proposed for uncertain positive systems. Then, the results are extended to positive time delay systems. In contrast with the previous design approaches, the new design method provides a general observer design with lower computational burden. Finally, three comparison examples are given to show the merit of the new design approach.  相似文献   

12.
In this paper, the leader-following consensus problem is investigated by event-triggered control for multi-agent systems subject to time-varying actuator faults. Firstly, for a case of the leader without control input, a distributed event-triggered fault-tolerant protocol is proposed with the help of adaptive gains. Secondly, the proposed protocol is developed by an auxiliary nonlinear function to compensate the effect of the leader’s unknown bounded input. It is shown that under the both obtained protocols the tracking errors converge to an adjustable neighborhood around the origin, meanwhile the Zeno behavior is avoided. Moreover, the protocols are fully distributed in sense that any global information associated with the network is no longer utilized. Finally, numerical examples are presented to show the validity of the obtained protocols.  相似文献   

13.
With the increasing growth of video data, especially in cyberspace, video captioning or the representation of video data in the form of natural language has been receiving an increasing amount of interest in several applications like video retrieval, action recognition, and video understanding, to name a few. In recent years, deep neural networks have been successfully applied for the task of video captioning. However, most existing methods describe a video clip using only one sentence that may not correctly cover the semantic content of the video clip. In this paper, a new multi-sentence video captioning algorithm is proposed using a content-oriented beam search approach and a multi-stage refining method. We use a new content-oriented beam search algorithm to update the probabilities of words generated by the trained deep networks. The proposed beam search algorithm leverages the high-level semantic information of an input video using an object detector and the structural dictionary of sentences. We also use a multi-stage refining approach to remove structurally wrong sentences as well as sentences that are less related to the semantic content of the video. To this intent, a new two-branch deep neural network is proposed to measure the relevance score between a sentence and a video. We evaluated the performance of the proposed method with two popular video captioning databases and compared the results with the results of some state-of-the-art approaches. The experiments showed the superior performance of the proposed algorithm. For instance, in the MSVD database, the proposed method shows an enhancement of 6% for the best-1 sentences in comparison to the best state-of-the-art alternative.  相似文献   

14.
Extraction of pattern class associated discriminative subspace is critical to many pattern classification problems. Traditionally, pattern class labels are regarded as indicators to discriminate between pattern classes. In this work, a novel indicator model is proposed to extract discriminant subspace by projecting samples onto a space where the projected categories are mutually orthogonal and in-category normalized. Category orthonormal property and its connections to discriminative subspace extraction are derived. It is shown that the proposed method has a strong connection with the existing Fukunaga-Koontz Transformation but extends the category number from two to multiple. For applications with a large dimension size but limited number of samples, an analytic least-norm solver is developed for calculating the projection function. A discriminative subspace extraction method for multiple classes is proposed and is evaluated by a combination with classifiers. Experiments demonstrate a promising result of using the extracted category orthonormal subspace for multi-class subspace extraction when sample number is small.  相似文献   

15.
In this paper, a novel event-triggered adaptive fault-tolerant control scheme is proposed for a class of nonlinear systems with unknown actuator faults. Multiplicative faults and additive faults are taken into account simultaneously, both of which may vary with time. Different from existing results, our controller fuses static reliability information and dynamic online information, which is helpful to enhance the fault-tolerant capability. With the aid of an event-triggering mechanism, an actuator switching strategy and a bound estimation approach, the communication burden is significantly reduced and the impacts of the actuator faults as well as the network-induced error are effectively compensated for. Moreover, by employing the prescribed performance control technique, the system tracking error can converge to a predefined arbitrarily small residual set with prescribed convergence rate and maximum overshoot, which implies that the proposed scheme is able to ensure rapid and accurate tracking. Simulation results are presented to illustrate the effectiveness of the proposed scheme.  相似文献   

16.
This paper investigates an adaptive prescribed performance control strategy with specific time planning for trajectory tracking of robotic manipulator subject to input constraint and external disturbances. By constructing an accumulated error vector embedded with a performance enhancement function and introducing an input auxiliary function, a specified-time control framework with built-in prescribed performance is further designed to ensure that the trajectory tracking performance. More particularly, the proposed control law is compatible with the control input saturation suppression algorithm, which is capable of improving the robustness of closed loop system. Under the framework of the proposed control strategy, it is proved by theory that all the signals in the closed-loop system are bounded, and moreover the tracking error can reach the exact convergence domain in a given time. At last, a numerical example is presented to indicate the feasibility and effectiveness of the proposed method.  相似文献   

17.
Self-driving vehicles must be equipped with path tracking capability to enable automatic and accurate identification of the reference path. Model Predictive Controller (MPC) is an optimal control method that has received considerable attention for path tracking, attributed to its ability to handle control problems with multiple constraints. However, if the data acquired for determining the reference path is contaminated by non-Gaussian noise and outliers, the tracking performance of MPC would degrades significantly. To this end, Correntropy-based MPC (CMPC) is proposed in this paper to address the issue. Different from the conventional MPC model, the objective of CMPC is constructed using the robust metric Maximum Correntropy Criterion (MCC) to transform the optimization problem of MPC to a non-concave problem with multiple constraints, which is then solved by the Block Coordinate Update (BCU) framework. To find the solution efficiently, the linear inequality constraints of CMPC are relaxed as a penalty term. Furthermore, an iterative algorithm based on Fenchel Conjugate (FC) and the BCU framework is proposed to solve the relaxed optimization problem. It is shown that both objective sequential convergence and iterate sequence convergence are satisfied by the proposed algorithm. Simulation results generated by CarSim show that the proposed CMPC has better performance than conventional MPC in path tracking when noise and outliers exist.  相似文献   

18.
In this paper, an adaptive TSK-type CMAC neural control (ATCNC) system via sliding-mode approach is proposed for the chaotic symmetric gyro. The proposed ATCNC system is composed of a neural controller and a supervisory compensator. The neural controller uses a TSK-type CMAC neural network (TCNN) to approximate an ideal controller and the supervisory compensator is designed to guarantee system stable in the Lyapunov stability theorem. The developed TCNN provides more powerful representation than the traditional CMAC neural network. Moreover, all the control parameters of the proposed ATCNC system are evolved in the Lyapunov sense to ensure the system stability with a proportional–integral (PI) type adaptation tuning mechanism. Some simulations are presented to confirm the validity of the proposed ATCNC scheme without the occurrence of chattering phenomena. Further, the proposed PI type adaptation laws can achieve faster convergence of the tracking error than that using integral type adaptation laws in previous published papers.  相似文献   

19.
The continuous finite-time nonsingular terminal sliding mode (NTSM) attitude tracking control for rigid spacecraft is investigated. Firstly, a finite-time attitude controller combined with a new adaptive update law is designed. Different from existing controllers, the proposed controller is inherently continuous and the chattering is effectively reduced. Then, an adaptive model-free finite-time state observer (AMFFTSO) and an angular velocity calculation algorithm (AVCA) are developed to estimate the unknown angular velocity. The unique feature of the proposed method is that the finite-time estimation of angular velocity is achieved and no prior knowledge of quaternion derivative upper bound is needed. Next, based on the estimated angular velocity, a finite-time attitude controller with only attitude measurement is developed. Finally, some simulations are presented and the effectiveness of the proposed control scheme is illustrated.  相似文献   

20.
This paper investigates the robust attitude tracking control problem for a rigid-flexible coupling spacecraft. First, the dynamic model for a rigid-flexible coupling spacecraft is established based on the first-order approximation method to fully reveal the coupling effect between rigid movement and flexible displacement when the spacecraft is in rapid maneuver. In the condition that flexible vibration measurements are not available, an robust output feedback controller which is independent of model is presented using Lyapunov method with considering state-independent disturbances. To resolve the chattering problem caused by the discontinuous sign function, a modified continuous output feedback controller is proposed by introducing functions with continuous property. Rigorous proof is achieved showing that the proposed control law ensures asymptotic stability and guarantees the attitude of a rigid-flexible spacecraft to track a time-varying reference attitude based on angle and angular velocity measurements only. Finally, simulations are carried out to verify the simplicity and effectiveness of the proposed control scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号