首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
This paper addresses the problem of the delay-dependent stability for neutral Markovian jump systems with partial information on transition probability. The time delays discussed in this paper are time-varying delays. Combined the new constructed Lyapunov functional with the introduced free matrices, and using the analysis technique of matrix inequalities, the delay-dependent stability conditions are obtained. The obtained results are formulated in terms of LMIs, which can be easily checked in practice by Matlab LMI control toolbox. Three numerical examples are given to show the validity and potential of the developed criteria.  相似文献   

2.
This paper mainly concerns with the stability analysis of the sampled-data nonlinear active disturbance rejection control (ADRC)-based control system. Firstly, a class of single-input-single-output (SISO) continuous plant is discretized using zero-order-hold (ZOH), and several kinds of digital implementation methods for the nonlinear extended state observer (NLESO) are newly proposed. Then the sampled-data nonlinear ADRC (NLADRC) based closed-loop system is transformed into a discrete-time Lurie-like system, to which linear matrix inequality (LMI)-based sufficient conditions for absolute stability and robust absolute stability are obtained. The sufficient conditions provide convenient and effective methods for determining the stability and its relationship with the parameters of the controller, the plant and the sampling period. Using the ball-beam system as an example, the proposed results are verified in both simulations and experiments.  相似文献   

3.
This paper is concerned with stability analysis and stabilization of time-varying delay discrete-time systems in Lyapunov-Krasovskii stability analysis framework. In this regard, a less conservative approach is introduced based on non-monotonic Lyapunov-Krasovskii (NMLK) technique. The proposed method derives time-varying delay dependent stability conditions based on Lyapunov-Krasovskii functional (LKF), which are in the form of linear matrix inequalities (LMI). Also, a PID controller designing algorithm is extracted based on obtained NMLK stability condition. The stability of the closed loop system is guaranteed using the designed controller. Another property that is important along with the stability, is the optimality of the controller. Thus, an optimal PID designing technique is introduced in this article. The proposed method can be used to design optimal PID controller for unstable multi-input multi-output time-varying delay discrete-time systems. The proposed stability and stabilization conditions are less conservative due to the use of non-monotonic decreasing technique. The novelty of the paper comes from the consideration of non-monotonic approach for stability analysis of time-varying delay discrete-time systems and using obtained stability conditions for designing PID controller. Numerical examples and simulations are given to evaluate the theoretical results and illustrate its effectiveness compared to the existing methods.  相似文献   

4.
This paper focuses on the issue of finite-time stability for a general form of nonlinear systems subject to state-dependent delayed impulsive controller. Based on the Lyapunov theory and the impulsive control theory, sufficient conditions for finite-time stability (FTS) and finite-time contractive stability (FTCS) are obtained. Additionally, we apply theoretical results to finite-time synchronization of chaotic systems and design the effective state-dependent delayed impulsive controllers in terms of techniques of linear matrix inequality (LMI). Finally, we present two numerical examples of finite-time synchronization of cellular neural networks and Chua’s circuit to verify the effectiveness of our results.  相似文献   

5.
This paper deals with the absolute stability analysis for uncertain time-delayed Lur systems with sector and slope restricted nonlinearities. New delay-dependent stability criteria are derived via linear matrix inequality (LMI) formulation that can be easily solved by various convex optimization techniques. Sector bounds and slope bounds are employed to a Lyapunov-Krasovskii functional through convex representation of the nonlinearities so that less conservative stability conditions are obtained. A numerical example shows effectiveness of the proposed stability condition over some existing ones.  相似文献   

6.
In this paper, the exponential stability of a class of delayed neural networks described by nonlinear delay differential equations of the neutral type has been studied. By constructing appropriate Lyapunov functional and using the linear matrix inequality (LMI) optimization approach, a series of sufficient criteria is obtained ensuring the existence, uniqueness and global exponential stability of an equilibrium point of such a kind of delayed neural networks. These conditions are dependent on the size of the time delay and the measure of the space, which is usually less conservative than delay-independent and space-independent ones. And, these networks are generalized without assuming the boundedness and differentiability of the activate functions. The proposed LMI condition can be checked easily by recently developed algorithms. The results are new and improve the earlier work. Examples are provided to demonstrate the effectiveness and applicability of the proposed criteria.  相似文献   

7.
A full order fractional-order observer is designed for a class of Lipschitz continuous-time nonlinear fractional-order systems with unknown input. Sufficient conditions of existence for the designed observer and stability of state estimation error system are developed by reconstructing state and using general quadratic Lyapunov function. By applying fractional-order extension of Lyapunov direct method, the stability of the fractional-order state estimation error system is analyzed. Due to the conditions involving a nonlinear matrix inequality, a new sufficient condition with linear matrix inequality (LMI) is reformulated, which makes the full order fractional-order observer implemented easily by using Matlab LMI toolbox. Examples are taken to show the effectiveness of the proposed approach by numerical simulations.  相似文献   

8.
In this paper, the stability analysis of impulsive discrete-time stochastic BAM neural networks with leakage and mixed time delays is investigated via some novel Lyapunov–Krasoviskii functional terms and effective techniques. For the target model, stochastic disturbances are described by Brownian motion. Then the result is further extended to address the problem of robust stability of uncertain discrete-time BAM neural networks. The conditions obtained here are expressed in terms of Linear Matrix Inequalities (LMIs), which can be easily checked by MATLAB LMI control toolbox. Finally, few numerical examples are presented to substantiate the effectiveness of the derived LMI-based stability conditions.  相似文献   

9.
This paper deals with the problem of robust stability and robust stabilization for a class of continuous-time singular Takagi–Sugeno fuzzy systems. Sufficient conditions on stability and stabilization are proposed in terms of strict LMI (Linear Matrix Inequality) for uncertain T–S fuzzy models. In order to reduce the conservatism of results developed using quadratic method, an approach based on non-quadratic Lyapunov functions and S-procedure is proposed. Illustrative examples are given to show the effectiveness of the given results.  相似文献   

10.
In this paper, we investigate the Lyapunov stability for general nonlinear systems by means of the event-triggered impulsive control (ETIC), in which the delayed impulses are greatly taken into account. On the basis of impulsive control theory, a set of Lyapunov-based sufficient conditions for uniform stability and asymptotic stability of the addressed system are obtained in the framework of event triggering, under which Zeno behavior is excluded. It is shown that our results depend on the event-triggering mechanism (ETM) and the time delays. Then the mentioned results are applied to synchronization of chaotic systems and moreover, a kind of impulsive controllers is designed in form of linear matrix inequality (LMI), where the delayed impulsive control can be activated only when events happen. In the end, to illustrate the validity of the mentioned theoretical results, we present a numerical example.  相似文献   

11.
In this paper, the asymptotic stability analysis is investigated for a kind of discrete-time bidirectional associative memory (BAM) neural networks with the existence of perturbations namely, stochastic, Markovian jumping and impulses. Based on the theory of stability, a novel Lyapunov–Krasovskii function is constructed and by utilizing the concept of delay partitioning approach, a new linear-matrix-inequality (LMI) based criterion for the stability of such a system is proposed. Furthermore, the derived sufficient conditions are expressed in the structure of LMI, which can be easily verified by a known software package that guarantees the globally asymptotic stability of the equilibrium point. Eventually, a numerical example with simulation is given to demonstrate the effectiveness and applicability of the proposed method.  相似文献   

12.
This paper considers existence, uniqueness and the global asymptotic stability of fuzzy cellular neural networks with mixed delays. The mixed delays include constant delay in the leakage term (i.e., “leakage delay”), time-varying delays and continuously distributed delays. Based on the Lyapunov method and the linear matrix inequality (LMI) approach, some sufficient conditions ensuring global asymptotic stability of the equilibrium point are derived, which are dependent on both the discrete and distributed time delays. These conditions are expressed in terms of LMI and can be easily checked by MATLAB LMI toolbox. In addition, two numerical examples are given to illustrate the feasibility of the result.  相似文献   

13.
This paper studies the stochastic stability and extended dissipativity analysis for delayed Markovian jump neural networks (MJNNs) with partly unknown transition rates (PUTRs) using novel integral inequality. A new double integral inequality with augmented vector is introduced through inequality technique and the zero-valued equality approach, which can more efficiently estimate the derivative of the triple integral inequality. Next, an augmented Lyapunov-Krasovskii functional (LKF) with delay-product-type (DPT) is constructed. Besides, with the introduced integral inequality, the augmented LKF and some other analytical techniques, some less conservative extended dissipation conditions are obtained in the form of linear matrix inequality (LMI). Finally, several examples are provided to illustrate the effectiveness of the obtained results.  相似文献   

14.
A class of networked nonlinear control systems with norm-bounded uncertainties is presented in this paper. The class is represented by Takagi–Sugeno (T-S) fuzzy models with packet processing. The network loop delay is considered either as known delay or random delay. For the former case, we develop conditions that guarantee the robust asymptotic stability and state-feedback stabilization with strict dissipativity and cast the results in linear matrix inequality (LMI) framework. Next employing a probabilistic-based delay partitioning method to deal with random delay, we establish novel LMI criteria for strict dissipative stability analysis and feedback synthesis. The efficacy of the ensuing techniques is demonstrated by numerical solution of typical examples and Mont Carlo simulation.  相似文献   

15.
In this paper, we discussed the robust finite-time stability of conic type nonlinear systems with time varying delays. Some novel conditions are derived to design a linear quadratic regulator (LQR) based sliding mode control (SMC) by proposing an integral switching surface. The sufficient conditions are derived for the considered nonlinear system using Lyapunov–Krasovskii stability theory and linear matrix inequality (LMI) approach. The proposed conditions can be solved using some standard numerical packages. Finally, a practical example is provided to validate the advantages and effectiveness of the proposed results.  相似文献   

16.
Based on the generalized probability-interval-decomposition approach, the delay-dependent stability analysis for a class of T-S fuzzy systems with stochastic delays is investigated. The information of the probability distribution of stochastic delay is fully exploited and a series of sufficient stability criteria are obtained. A rigorous mathematical proof is provided that the conservatism of the proposed stability criteria can be reduced progressively by increasing the number of the probability interval. Based on this, a novel hierarchy of LMI conditions is established. It is rigorously proved that with the same decomposition of probability interval, the conservatism of the proposed stability criteria is less than the one obtained by time-varying delay decomposition approach. The computation burden of the proposed method is analyzed and compared with one of the time-varying delay decomposition approach. Finally, a numerical example is given to illustrate the validness and effectiveness of the proposed approach.  相似文献   

17.
The switching signal design for global exponential stability of discrete switched systems with interval time-varying delay is considered in this paper. Some LMI conditions are proposed to design the switching signal and guarantee the global exponential stability of switched time-delay system. Some nonnegative inequalities are used to reduce the conservativeness of the systems. Finally, two numerical examples are illustrated to show the main result.  相似文献   

18.
This paper is concerned with reliable H?control for saturated linear Markov jump systems with uncertain transition rates and asynchronous jumped actuator failure. The actuator failures are assumed to occur randomly under the Markov process with a different jumping mode from the system jumping mode. In considering the mixed-mode-dependent state feedback controller, both H stochastic stability analysis for closed-loop system with completely accessible transition rates and uncertain transition rates are investigated. Moreover, based on the obtained stability conditions, the H?control problems are investigated, and the controller gains can be obtained by solving a convex optimization problem with minimizing H performance as objective and linear matrix inequalities (LMIs) as constraints. The problem of designing state feedback controllers such that the estimate of the domain of attraction is enlarged is also formulated and solved as an optimization problem with LMI constraints. Simulation results are presented to illustrate the effectiveness of the proposed results.  相似文献   

19.
This paper deals with the fault tolerant control (FTC) design for a Vertical Takeoff and Landing (VTOL) aircraft subject to external disturbances and actuator faults. The aim is to synthesize a fault tolerant controller ensuring trajectory tracking for the nonlinear uncertain system represented by a Takagi–Sugeno (T–S) model. In order to design the FTC law, a proportional integral observer (PIO) is adopted which estimate both of the faults and the faulty system states. Based on the Lyapunov theory and ?2 optimization, the trajectory tracking performance and the stability of the closed loop system are analyzed. Sufficient conditions are obtained in terms of linear matrix inequalities (LMI). Simulation results show that the proposed controller is robust with respect to uncertainties on the mechanical parameters that characterize the model and secures global convergence.  相似文献   

20.
Novel stability criterion is presented for the existence, uniqueness and globally asymptotic stability of the equilibrium point of a class of cellular neural networks with time-varying delays. Based on Gu's discretized Lyapunov–Krasovskii functional (LKF) theory, a novel vector LKF is introduced by dividing the variation interval of the time delay into several subintervals with equal length. By using the homeomorphism mapping principle, free-weighting matrix method and linear matrix inequality (LMI) techniques, the obtained condition is less conservative than some previous results. Three examples are also given to show the effectiveness of the presented criterion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号