首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
“+、-、×、÷”是数学中最基本的运算,但在数列中还是一种特殊的解题技巧,能有效地解决数列中的数学问题,并使其过程显得简捷明快.下面试从4个方面加以说明.一、“+”的技巧等差中项性质,数列求和中的倒序相加,求通项中的累加等,都包含了“+”的技巧.例1在等差数列an中,a1+a2+a3=15,an+an-1+an-2=78,Sn=155,求n.解由a1+an=a2+an-1=a3+an-2,将该6项相加,得a1+a2+a3+an+an-1+an-2=3(a1+an)=15+78,∴a1+an=31,∴Sn=n(a1+an)2=n×312=155,∴n=10.例2求和Sn=C1n+2C2n+3C3n+…+nCnn.解Sn=0C0n+1C1n+2C2n+3C3n+…+nCnn,Sn=nCnn+(n-1)Cn-1n…  相似文献   

2.
<正> 新编高中数学教材(试验本)第二册(下A)的“复习参考题十”中有一道题:求证:Cn1+2Cn2+3Cn3+…十nCnn=n·2n-1.本题是排列、组合中的经典题目,它的内涵丰富,从不同角度挖掘,可有不同的心得和感受,可提高分析问题、解决问题的能力.  相似文献   

3.
一、对证法设 {an}是由正数组成的等比数列 ,Sn 是其n项和 ,证明 :log 12 Sn +log 12 Sn+22 >log 12 Sn+1证法一 :若Sn·Sn+2 相似文献   

4.
正一、利用公式C0n+C1n+C2n+C3n+…+Cn n=2n求和1.直接利用公式例1求和C1n+C3n+C5n+…解由于奇数项之和与偶数项之和相等,因此奇数项之和等于所有项之和的一半.所以C1n+C3n+C5n+…=1/2×2n=2n-1.2.由公式Cr n=Cn-r n进行转化例2求和1+2C1n+3C2n+…+(n+1)Cn n.解设S=1+2C1n+3C2n+…+(n+1)Cn n,其倒序和为S=(n+1)Cn n+nCn-1n+…+2C1n+1.考虑到Cr n=Cn-r n(0≤r≤n),将以上两式相加得2S=(n+2)C0n+(n+2)C1n+…+(n+2)Cn n=(n+2)·2n,所以S=(n+2)·2n-1  相似文献   

5.
一、在应用公式Pmn =n !(n-m) !或Cmn =n !m !(n -m) !时 ,必须使n、m满足关系式n m >0 .【例 1】 已知13 Cyx+2 =15Cy+2x+2 ,求x和y的值 .分析 :已知条件实质是一个方程组 ,反映的是组合数的问题 ,因此x、y必须满足x +2 y+2且y >0的整数 .由组合数公式将原方程组化为 :13 · (x+2 ) !y !(x -2 -y) !  =15· (x+2 ) !(y+1 ) !(x-y +1 ) !  =15· (x +2 ) !(y+2 ) !(x -y) !∵ (x-y+2 ) !=(x -y+2 ) (x-y+1 ) !(y +1 ) !=(y+1 ) ·y !(x-y +1 ) !=(x-y+1 )· (x-y) !(y+2 ) !=(y +2 ) · (y+1 ) !∴等式可变形为5(y+1 ) =3 (x-y+2 )x-…  相似文献   

6.
据说著名的数学家高斯,9岁时就能用巧妙的方法速算1+2+3……+100。这种方法叫倒写相加法,现在我们用这种方法来计算1+2+3+……+n。令a=1+2+3+……+n=n+(n-1)+(n-2)+……+1两式相加,得2a=(1+n)+[2+(n-1)]+[3+(n-2)]+……+(n+1)=n(n+1)∴a=12n(n+1)你一定会为高斯这种妙算拍案叫绝!惊叹之余,你是否想过还能找出什么简便方法来计算1+2+3+……+n吗?方法一:a=1+2+3+……+n=[n-(n-1)]+[n-(n-2)]+[n-(n-3)]+……+(n-0)=n·n-[(n-1)+(n-2)+(n-3)+……+0]=n2-(a-n)解方程a=n2-(a-n),得a=12n(n+1)方法二:注意到任一自然数k都能写成k=12[k(k+1)-(k-1)k]…  相似文献   

7.
组合数 Ckn也称为二项式系数 ,在竞赛数学中有广泛的应用 ,本文仅讨论组合数中的一个公式 Ckn=nk Ck- 1 n- 1 的证明和简单应用 .例 1 证明 Ckn =nk Ck- 1 n- 1 . ( * )证明 由组合数的显式表示 :右边 =nk Ck- 1 n- 1 =nk . ( n - 1 ) !( k - 1 ) !( n - k) != n!k!( n - k) !=左边 .故 ( * )成立 .下面讨论公式 ( * )的应用 .例 2 计算 C01 1 1 C1 1 1 2 C21 1 3 … C1 1 1 1 1 2 .( 1 998上海市高中数学竞赛题 )解 由 ( * )可得 :1k Ck- 1 n- 1 =1n Ckn,当 n= 1 2 ,且 k分别取 1 ,2 ,… ,1 2后可得C01 1 1 C1 1 1 2 C…  相似文献   

8.
数列求和一直是高考的热点,因此,正确快速求和就显得尤为重要.对于一般的等差乘等比数列常用错位相减法来求和. 例 求Cn=(2n-1)2n的前n项和. 解:由Sn=1×2+3×22+5×23+…+(2n-1)·2n,得2Sn=1×22+3×23+5×24+…+(2n-1)·2n+1. 两式项减得:-Sn=2+2×22+2×23+…+2×2n-(2n-1)·2n+1.  相似文献   

9.
一、证明等式【例1】求证:C1n 2C2n 3C3n … nCnn=n·2n-1.证明:由题构造二项式(1 x)n=C0n C1nx C2nx2 … Cnnxn.两端对x求导数得[(1 x)n]=[C0n C1nx C2nx2 … Cnnxn]即n(1 x)n-1=C1n 2C2nx … (n-1)Cn-1nxn-2 nCnnxn-1令x=1得n·2n-1=C1n 2C2n 3C3n … nCnn∴C1n 2C2n 3C3n … nCnn=n·2n-1.二、证明不等式【例2】已知m,n是正整数,且2≤m(1 n)m.证明:原不等式等价于不等式nln(1 m)>mln(1 n)即ln(1 n)n1,…  相似文献   

10.
高中数学学过 C_n~0+C_n~1+C_n~2+…+C_n~n=2~n, C_n~1+2C_n~2+…+nC_n~n=n·2~(n-1), 即sum from j=0 to n C_n~j=2~n,(1) sum from j=0 to n jC_n~j=n·2~(n-1)。(2)  相似文献   

11.
定理nn-1[(m+1)n-1n-1]<∑mi=11niαn-αn-1(α>1,n∈N,n≥2).证明由二项式定理得(α-1n)n=∑nr=0(-1)rCrn1nrαn-r,∵Crn(1n)r-Cr+1n(1n)r+1=Cr+1n(1n)r+1·nr+rn-r≥0,∴Crn(1n)r≥Cr+1n(1n)r+1(当且仅当r=0时等号成立).若n为偶数时,(α-1n)n=αn-αn-1+(C2n1n2αn-2-C3n1n3·αn-3)+…+(Cn-2n1nn-2α2-Cn-1n1nn-1α)+Cnn1nn>αn-αn-1;若n为奇数时,(α-1n)n=αn-αn-1+(C2n1n2αn-2-C3n1n3·αn-3)+…+(Cn-1n1nn-1α-Cnn1nn)>αn-αn-1.2定理的证明(1)∑m…  相似文献   

12.
题目 等差数列 { an} ,{ bn}的前 n项和分别为 Sn和 Tn,若 Sn Tn=2 n3n 1,则 limn→∞anbn等于(   )(A) 1  (B) 63   (C) 23  (D) 49误解 由 Sn Tn=2 n3n 1,可设 Sn=2 n· k,Tn=(3n 1)·k,(k≠ 0 ,k为常数 ) ,因而 an=Sn- Sn- 1 =2 k,bn=Tn- Tn- 1 =3k,∴limn→∞anbn=2 k3k=23,故选 C.这是 1995年全国高考题理科第 12题 ,文科第 14题 ,此题答案确为 C.上述误解易犯而难悟 ,得出答案 C纯属巧合 ,并非巧解 .错解分析 解答的错误在于“设 Sn=2 n· k,Tn=(3n 1)· k,(k≠ 0 ,k为常数 )”,事实上 ,对于等差数列来说 ,前 n…  相似文献   

13.
一、赋值法例1证明下列等式:(1)C0n C1n C2n … Cnn=2n;(2)C0n C2n C4n …=C1n C3n C5n …=2n-1.证明:由二项展开式知(1 x)n=C0n C1n·x C2n·x2 … Cnn·xn.(1)令x=1,则(1 1)n=C0n C1n C2n … Cnn.即C0n Cn1 C2n … Cnn=2n.(2)令x=-1,则(1-1)n=C0n-C1n Cn2-Cn3 … (-1)n·Cnn.  相似文献   

14.
<正>组合恒等式是以高中排列组合、二项式定理为基础,并加以推广和补充而形成的一类问题,它具有一定的难度和特殊的技巧,且灵活性强,对学生的运算能力的培养和思维灵活性的训练都有良好的作用。下面就来谈组合恒等式的证明。例1求证:C_n1+2C_n1+2C_n2+3C_n2+3C_n3+…+n C_n3+…+n C_nn=n·2n=n·2(n-1)。证法一:设S_n=0C_n(n-1)。证法一:设S_n=0C_n0+C_n0+C_n1+2C_n1+2C_n2+…+nC_n2+…+nC_nn。则S_n=nC_nn。则S_n=nC_nn+(n-1)C_(n-1)n+(n-1)C_(n-1)(n-1)+…+C_n(n-1)+…+C_n1+C_n1+C_n0两式相加,并结合C_n0两式相加,并结合C_nk=C_nk=C_n(n-k),得:  相似文献   

15.
在知识网络的交汇点设计的高考解答题,运用知识之间的交叉、渗透和组合,是基础性与综合性的最佳表现形式·这个命题原则,在2005年高考试题中得到了充分体现和加强,下面两例就足以说明这一点·【例1】(2005年全国高考浙江省理科试题)设点An(xn,0)、Pn(xn,2n-1)和抛物线Cn:y=x2+anx+bn(n∈N*),其中an=-2-4n-2n1-1,xn由以下方法得到:x1=1,点P2(x2,2)在抛物线C1:y=x2+a1x+b1上,点A1(x1,0)到P2的距离是A1到C1上点的最短距离,…,点Pn+1(xn+1,2n)在抛物线Cn:y=x2+anx+bn上,点An(xn,0)到Pn+1的距离是An到Cn上点的最短距离·(1)求x2及C1的方程…  相似文献   

16.
高中现行教材中已给出一些运用导数解决关于函数的单调性、极值、最值的问题和简单的应用题郾但随着高考对导数的考查力度的不断加大、加深,有必要对导数的应用做进一步的研究郾本文将给出导数在组合恒等式的证明、数列的求和与不等式的证明中的一些应用,供大家参考郾1.证明组合恒等式例1求证:C1n+2C2n+3C3n…+nCnn=n·2n-1.分析:本题可采用倒序相加法,并结合组合数的性质和等差数列的性质即可解决,但过程较复杂郾如果通过构造函数并求导的办法,那么问题就会变得很简单,并且我们还会得出许多意想不到的结论郾证明:设f穴x雪=穴1+x雪n-1,则f…  相似文献   

17.
下面用数列知识解答二道物理问题.【例1】 A、B两点相距s,将s平分为n等分,今让一物体(可视为质点)从A点由静止开始向B做匀加速运动,但每过一个等分点,加速度都增加an,试求该物体到达B点的速度.解析:设物体经过第1,2,3,…,n段路程后的速度分别为v1,v2,v3,…,vn则有v21=2asn,v22-v21=2a(1+1n)sn,v23-v22=2a(1+2n)sn,……,v2n-v2n-1=2a(1+n-1n)sn,将上述各式两端分别相加后得v2n=2asn[1+(1+1n)+(1+2n)+……+(1+n-1n)]=2asn[n+(1n+2n+……+n-1n)].上式中的1n+2n+……+n-1n为一项数为n-1的等差数列的和,其和为1n[1+2+……+(n-1)]1n·1+(n-1)2…  相似文献   

18.
本文介绍一类不等式的证明方法。这种证法简洁,有章可循。下面举例说明: [例1] 证明不等式 1/2·3/4…(2n-1)/2n<1/((2n+1)~(1/2))。证明:令S_n=1/((2n+1)~(1/2))则 S_(n-1)=1/((2n+1)~(1/2)) ∵ S_n/S_(n-1)=((2n-1)~(1/2))/((2n+1)~(1/2))=(2n-1)/((4n~2-1)~(1/2))>(2n-1)/2n。(n≥2) 而S_1=1/(3~(1/2))>1/2。故:1/2·3/4…(2n-1)/(2n)相似文献   

19.
排列、组合是中学代数中一块相对独立的内容 ,学好这部分知识对提高学生的数学思维能力有积极的促进作用 .而解决这类问题的思考方法与其它代数内容有所不同 ,不能仅靠代数的逻辑推理 .本文就这部分知识中组合恒等式的证明谈几种常用的方法 .1 通项研究法通项研究法是指从研究其通项入手 ,通过变形、化简 ,显现出所证恒等式的内在规律 ,从而使原恒等式得证 .例 1 求证 :C0n+ 12 C1 n+ 13C2n+… +1n+ 1 Cnn=1n+ 1 ( 2 n+1 - 1 ) ,证明 左边第 k项为1k Ck- 1 n =1k· n!( k- 1 ) ![n- ( k- 1 ) !]=1n+ 1 · ( n+ 1 ) !k![( n+ 1 ) - k]!=…  相似文献   

20.
2005年浙江高考数学卷(理科)第20题:设点An(xn,0),Pn(xn,2n-1)和抛物线Cn:y=x2+anx+bx(n∈N),其中an=-2-4n-1/(2n-1),xn由以下方法得到:x1=1,点P2(x2,2)在抛物线C1:y=x2+a1x+b1上,点A1(x1,0)到P2的距离是A1到C1上点的最短距离…,点Pn+1(xn+1,2n)在抛物线Cn:y=x2+anx+bn上,点An(xn,0)到Pn+1的距离是An到Cn上点的最短距离.(Ⅰ)求x2及C1的方程;  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号