首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
在中学解析几何中求动点的轨迹,特别是求二次曲线的平行弦与绕定点的转动弦的中点轨迹一般都比较繁难,但如果恰当地使用二次曲线的直径方程,就会较简捷地推出结果.本文仅就二次曲线的直径方程在求二次曲线弦的中点轨迹的应用作一些初步的整理和探讨.  相似文献   

2.
如何求二次曲线的弦的中点轨迹方程,这是中学解析几何中常见的问题之一。目前解决这类问题的主要步骤是:根据所给条件建立弦的参数方程,将它与二次曲线的方程联立后,再求解,得出交点坐标(或将弦的参数方程代入二次曲线的方程后,利用根与系数的关系,求出二根之和),再利用中点坐标公式,便得到二次曲线的弦的中点轨迹参数方程,最后消  相似文献   

3.
平面解析几何中,有关二次曲线的中点问题,大致涉及求:“弦所在的直线方程”,“平行弦中点轨迹”,“绕定点转动弦中点轨迹”,“定长弦中点轨迹”,“弦”的长度,这五个方面的问题.一般在解决这些问题的方法上都较繁难.本文就针对这一情况,试以公式化的统一形式给予解决。而使解题方法简单、易行. 设二次曲线为:  相似文献   

4.
平面解析几何中,求二次曲线平行弦中点的轨迹问题,需引入渐近方向等概念,本文利用点对称概念解决了寻求一般二次曲线平行弦的中点轨迹方程等问题,供同行参考.  相似文献   

5.
求二次曲线弦的中点轨迹问题,人们通常用直接法、参数法和相关点法求解,这些方法的共同特点是利用题设,建立弦的端点、中点坐标的多个方程组,通过消元得到弦中点轨迹方程,其运算量都比较大.本文根据弦中点坐标与等差数列之间的关系,给出用等差点法求二次曲线弦的中点轨迹方法,并揭示出该解法的简捷性、适用性.  相似文献   

6.
二次曲线的弦的中点轨迹导数求法   总被引:1,自引:0,他引:1  
二次曲线的弦的中点轨迹的求解方法可以用代入法、几何法、直线参数方程法等,但这些方法有时比较麻烦。可以利用微分中值定理、导数公式和隐函数求导数法则,求解二次曲线的弦的中点轨迹。  相似文献   

7.
二次曲线的平行弦中点轨迹方程它的一般求法趋于公式化,无逻辑推理,求法单调,有的求解过程还较为复杂,而高中解析几何中的几类特殊二次曲线,求它的弦中点轨迹方程时,一般又是要引用韦达定理及中点坐标公式等,使得求解过程较为复杂,现介绍此类问题的另一求法供参考.  相似文献   

8.
有关圆锥曲线f(x,y)=Ax~2+Bxy+Cy~2+Dx+Ey+F=0的弦的中点问题,大体可分为两类:一是已知斜率为k的一组平行弦中点的轨迹(也就是直径)的方程;一是以定点(x_0,y_0)为中点的弦所在直线的方程(中点弦的方程)。下面分别作论述。一、斜率为k的一组平行弦中点的轨迹(直径)方程定理1.二次曲线f(x,y)=Ax~2+Bxy+Cy~2+Dx+Ey+F=0的斜率为k的一组平行弦中点的轨迹(即直径)方程是(2A+Bk)x+(B+2Ck)y+(D+Ek)=0①推论二次曲线的直径是一条过斜率为  相似文献   

9.
在解析几何中,经常要求这样两类中点轨迹方程:第一类是求一个定点与二次曲线上任一点的连线的中点轨迹方程;第二类是过一个定点作二次曲线的弦,求弦中点的轨迹方程。本文准备给出这两类中点轨迹方程的一般形式,利用它们,可以直接写出要求的轨迹方程。设一般二次曲线的方程为 Ax~2 Bxy Cy~2 Dx Ey F=0其中A、B、C不全为零。为了方便起见,我们设f(x,y)=Ax~2 Bxy Cy~2 Dx Ey F,这样二次曲线的  相似文献   

10.
本文举例说明求二次曲线弦的中点轨迹方程的四种方法.并对各种方法的优劣进行比较和评析.  相似文献   

11.
中心对称广泛存在于解析几何问题中,巧妙利用好中心对称原理,可使我们在解决二次曲线中点弦问题时多一条有效途径,常能起到化繁为简,出奇制胜的效果.本文就中心对称性原理在求二次曲线中点弦所在直线方程问题上作一些介绍,让读者感受中心对称应用之巧妙.  相似文献   

12.
本刊86年第3期《二次曲线中点弦方程和弦中点的轨迹方程》一文例3“过点P(0,1)作直线与抛物线y~2=x相交,求被抛物线截得的弦的中点的轨迹的方程”的答案中说轨迹是抛物线(y-1/2)~2=1/2(x 1/2)位于已知抛物线y~2=x内且在x轴下方的那一段  相似文献   

13.
涉及到直线和二次曲线的综合问题,特别是在二次曲线上还存在两点关于此直线对称时,引入这两点的中点坐标,把中点当做突破口来解决问题,不但能比较容易地得出结论,而且能得出一种解决这类问题的通用方法.在求参数的值、求参数的范围、求直线的方程时,巧妙利用弦的中点,可以给解题带来极大的方便.  相似文献   

14.
引用实对称矩阵运算和性质推导与表述二次曲线切线方程、平行弦中点轨迹方程、以定点为中点的弦方程。  相似文献   

15.
正在解析几何中有如下的定义:定义1[1]二次曲线平行弦中点的轨迹叫做这个二次曲线的直径,它所对应的平行弦,叫做共轭于这条直径的共轭弦,而直径叫做共轭于平行弦的直径.由此,我们便容易得出椭圆共轭直径的如下定义:定义2如图1,椭圆中平行于直径CD的弦的中点的轨迹AB和直径CD叫做互为  相似文献   

16.
介绍利用二元Taylor定理求二次曲线弦中点轨迹与弦长的一种方法.  相似文献   

17.
在平面解析几何中,经常会遇到求二次曲线的中点弦,求弦的中点,求弦长,给了定弦求关于这弦的共轭直径等问题,这些问题都可借助于韦达定理而简捷地解决。  相似文献   

18.
本刊’95第10期《求弦的中点轨迹方程的几种方法比较》一文中,举例说明求二次曲线弦的中点轨迹方程的四种方法,并对各种方法优劣进行比较和评析。笔者站在另一个角度给出此问题的第五种解法,它和上述四种方法比较将更有优越性。  相似文献   

19.
如果二次曲线的弦AB以M为中点,则称AB为过点M的中点弦.中点弦问题是中学解析几何中的典型问题,它的存在性容易忽视.本文探究根据二次曲线方程及中点M的坐标判断中点弦的存在性及弦的方程.  相似文献   

20.
在圆中,垂直于弦的直径平分此弦,并且平分此弦所对的弧,这就是垂径定理。由垂径定理可知,圆的直径为圆中一组平行弦中点的轨迹。把这一结论推广至圆锥曲线中,于是就有了圆锥曲线直径的概念。所谓圆锥曲线的直径就是圆锥曲线中一组平行弦中点的轨迹。本文将应用代换法则,由圆锥曲线的中点弦方程推导出直径方程,再举例说明直径方程在求解(或证明)一类对称问题中的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号