首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
2.
Science includes more than just concepts and facts, but also encompasses scientific ways of thinking and reasoning. Students' cultural and linguistic backgrounds influence the knowledge they bring to the classroom, which impacts their degree of comfort with scientific practices. Consequently, the goal of this study was to investigate 5th grade students' views of explanation, argument, and evidence across three contexts—what scientists do, what happens in science classrooms, and what happens in everyday life. The study also focused on how students' abilities to engage in one practice, argumentation, changed over the school year. Multiple data sources were analyzed: pre‐ and post‐student interviews, videotapes of classroom instruction, and student writing. The results from the beginning of the school year suggest that students' views of explanation, argument, and evidence, varied across the three contexts with students most likely to respond “I don't know” when talking about their science classroom. Students had resources to draw from both in their everyday knowledge and knowledge of scientists, but were unclear how to use those resources in their science classroom. Students' understandings of explanation, argument, and evidence for scientists and for science class changed over the course of the school year, while their everyday meanings remained more constant. This suggests that instruction can support students in developing stronger understanding of these scientific practices, while still maintaining distinct understandings for their everyday lives. Finally, the students wrote stronger scientific arguments by the end of the school year in terms of the structure of an argument, though the accuracy, appropriateness, and sufficiency of the arguments varied depending on the specific learning or assessment task. This indicates that elementary students are able to write scientific arguments, yet they need support to apply this practice to new and more complex contexts and content areas. © 2011 Wiley Periodicals, Inc. J Res Sci Teach 48: 793–823, 2011  相似文献   

3.
Current policy efforts that seek to improve learning in science, technology, engineering, and mathematics (STEM) emphasize the importance of helping all students acquire concepts and tools from computer science that help them analyze and develop solutions to everyday problems. These goals have been generally described in the literature under the term computational thinking. In this article, we report on the design, implementation, and outcomes of an after-school program on computational thinking. The program was founded through a partnership between university faculty, undergraduates, teachers, and students. Specifically, we examine how equitable pedagogical practices can be applied in the design of computing programs and the ways in which participation in such programs influence middle school students' learning of computer science concepts, computational practices, and attitudes toward computing. Participants included 52 middle school students who voluntarily attended the 9-week after-school program, as well as four undergraduates and one teacher who designed and implemented the program. Data were collected from after-school program observations, undergraduate reflections, computer science content assessments, programming products, and attitude surveys. The results indicate that the program positively influenced student learning of computer science concepts and attitudes toward computing. Findings have implications for the design of effective learning experiences that broaden participation in computing. (Keywords: computational thinking, programming, middle school, mixed methods)  相似文献   

4.
In this paper, we offer illustrations of a mathematics teacher’s difficulties with content knowledge when trying to find connections between school mathematics and science; we do so by describing the development of this teacher’s thinking and learning in her pursuit of connections between the concepts of slope of a line and density of matter. The paper is based on a sub-study that is part of a larger Colombian project, PROMESA (Creating Science and Mathematics Connected Learning Experiences that Open Opportunities for the Promotion of Algebraic Reasoning), which incorporated a Professional Learning Programme (PLP) seeking to integrate school science and mathematics teachers into working teams, in order to create science and mathematics connected learning experiences that considered the promotion of algebraic reasoning. The ‘challenging questions’ that emerged for this teacher, during the workshops of the induction stage of the PLP, became the driving force for her continued engagement in learning mathematics content in a connected way, as opposed to the compartmentalised content-item thinking that she had experienced as a school student. We provide illustrations of first steps in the development of a teacher’s mathematical understanding, which can support growth of mathematical knowledge for teaching.  相似文献   

5.
In this paper we explore the methodological implications of sociocultural approaches for the study of scientific knowledge and practices. Research in science studies and science education is reviewed with a focus on methodological considerations. Informed by empirically-based studies of scientific practices from multiple disciplinary perspectives, we describe our perspective for investigating science education which combines ethnography and discourse analysis. This theoretical position on the discursive nature of the social construction of school science-in-the-making forms the basis for theoretical and methodological critique and discussion. We provide a review of the history of nature of science (NOS) research to trace the methodological influence of Science and Technology Studies in science education. Four methodological issues associated with studying science as cultural practices are discussed: the local and contingent nature of situated definitions of science; theory dependence and coherence of research methodologies; attention to the study of school science-in-the-making; and reflexivity.  相似文献   

6.
Korean students have shown relatively little interest and confidence in learning science, despite being ranked in the top percentile in international evaluations of academic achievement in science such as the Trends in International Mathematics and Science Study. Although research indicates a positive relationship between student perceptions of science and their science learning, this area has not been sufficiently explored in Korea. Particularly, even though both students' perceptions of scientific practice and their understanding of the nature of science (NOS) are influenced by their science learning experiences at schools, little research examines how this perception, understanding, and experience are related to one another. This study aimed to uncover Korean students' perceptions of school scientific practice through exploring their drawings, writings, and responses to questionnaires. Participants were 500 Korean students in 3rd, 7th, and 10th grades who were asked to complete an open-ended questionnaire. The results indicated that Korean students typically viewed school scientific practices as experimental activities or listening to lecture; and that most participants held an insufficient understanding of the NOS. Overall, no significant relationship emerged between students' perceptions of school scientific practice and their understanding of the NOS. Our findings highlight the need to help both teachers and students understand the potential breadth of school scientific practices, beyond simple ‘activity mania.’ This study also suggests that teachers must balance implicit and explicit instructional approaches to teaching about the NOS through scientific practices in school science contexts.  相似文献   

7.

Existing computational thinking (CT) research focuses on programming in K-12 education; however, there are challenges in introducing it into the formal disciplines. Therefore, we propose the introduction of non-programming plugged learning in mathematics to develop students’ CT. The research and teaching teams collaborated to develop an instructional design for primary school students. The participants were 112 third- and fourth-grade students (aged 9–10) who took part in three rounds of experiments. In this paper, we present an iterative problem-solving process in design-based implementation research, focusing on the implementation issues that lead to the design principles in the mathematics classroom. The computational tasks, environment, tools, and practices were iteratively improved over three rounds to incorporate CT effectively into mathematics. Results from the CT questionnaire demonstrated that the new program could significantly improve students’ CT abilities and compound thinking. The results of the post-test revealed that CT, including the sub-dimensions of decomposition, algorithmic thinking, and problem-solving improved threefold compared to the pre-test between the three rounds, indicating that strengthened CT design enhanced CT perceptions. Similarly, the students’ and teacher’ interviews confirmed their positive experiences with CT. Based on empirical research, we summarize design characteristics from computational tasks, computational environment and tools, and computational practices and propose design principles. We demonstrate the potential of non-programming plugged learning for developing primary school students’ CT in mathematics.

  相似文献   

8.
Journal of Science Education and Technology - This study aimed to investigate the relationships among computational thinking (CT) skills, science, technology, engineering and mathematics (STEM)...  相似文献   

9.
Newly qualified teachers of mathematics and science are a precious resource and it important that they are provided with appropriate support and challenge during their first year in post. This study examines the developing thinking and practice of a group of such teachers in England and the influence of their mentors within the workplace context of the school. We argue that thinking and practice is restricted by the concern to ‘fit in’, by the belief that behaviour management should be addressed before teaching can be developed and by a lack of attention to the development of pedagogical thinking. We conclude that there is a need to change the beliefs and practices of induction mentors and develop their skills in discussing pedagogical ideas. This is most likely to be achieved within a school‐wide culture of continuing professional learning.  相似文献   

10.
Scientific literacy (SL) and critical thinking (CT) are key components of science education aiming to prepare students to think and to function as responsible citizens in a world increasingly affected by science and technology (S&T). Therefore, students should be given opportunities in their science classes to be engaged in learning experiences that promote SL and CT, which may trigger the need to build and develop knowledge, attitudes/values, thinking abilities, and standards/criteria in an integrated way, resulting in their ability to know how to take responsible action in contexts and situations of personal and social relevance. This paper reports on a study to design, implement, and assess science learning experiences focused on CT toward SL goal. Results support the conclusion that the learning experiences developed and implemented in a grade 6 science classroom had a significant influence on the students’ CT and SL. Within this elementary school context, the theoretical framework used appears to be a relevant and practical aid for developing learning experiences that promote CT/SL and in supporting teaching practices that are more in line with the goals of critical scientific literacy.  相似文献   

11.
The Next-Generation Science Standards (NGSS) challenge primary teachers and students to work and think like scientists and engineers as they strive to understand complex concepts. Teachers and teacher educators can leverage what is already known about inquiry teaching as they plan instruction to help students meet the new standards. This cross-case analysis of a multiple case study examined teacher practices in the context of a semester-long professional development course for elementary teachers. We reviewed lessons and teacher reflections, examining how kindergarten and first grade teachers incorporated NGSS scientific and engineering practices during inquiry-based instruction. We found that most of the teachers worked with their students on asking questions; planning and carrying out investigations; analyzing and interpreting data, using mathematics and computational thinking; and obtaining, evaluating and communicating information. Teachers faced challenges in supporting students in developing their own questions that could be investigated and using data collection strategies that aligned with students’ development of number sense concepts. Also, some teachers overemphasized the scientific method and lacked clarity in how they elicited and responded to student predictions. Discussion focuses on teacher supports that will be needed as states transition to NGSS.  相似文献   

12.
I challenge the ways a positivist view of science has led to the hegemonic discourse on writing to learn science and highlight contradictions in this discourse. I argue for an enabling pedagogy that draws on critical, feminist, and hegemonic pedagogies, and incorporates the affective, the creative, the critical, the cognitive, and diverse language practices set within sociocultural contexts. I advocate hybrid imaginative genres in secondary school science as one vehicle to disrupt hegemonic pedagogy. I describe the interactions between four teachers' beliefs about science and pedagogy and their use of imaginative writing within an enabling pedagogy. I also challenge the rules of scientific writing by using poetry and the first person, amplifying teachers' voices, and foregrounding my personal history. J Res Sci Teach 35: 345–362, 1998.  相似文献   

13.

Project Ga‐GEMS (Georgia's Project for Gifted Education in Math and Science) viewed the effect that placement in an integrated, hands‐on mathematics and science curriculum had on the achievement of academically talented high school students. For a two‐year period of time, students gifted in the areas of mathematics and science participated in a curriculum which incorporated higher‐level thinking skills and more real life laboratory experiences into mutually reinforcing mathematics and science lessons. After the conclusion of the two‐year program, Ga‐GEMS participants and a control group were given the mathematics and science sections of the ACT as they exited the tenth grade. The Ga‐GEMS students scored significantly higher on the Science Math Total, Pre‐Algebra/Elementary Algebra, Intermediate Algebra/Coordinate Geometry and Plane Geometry/Trigonometry sections of the ACT. To determine if the Ga‐GEMS students retained their higher scores throughout high school the SAT scores of both groups were compared as the students exited high school. Significant differences in the areas of total score and mathematics were noted. This study lends support for the use of a differentiated curriculum for educating gifted students in science and mathematics.  相似文献   

14.
Lisa Borgerding’s work highlights how students can understand evolution without necessarily committing to it, and how learners may come to see it as one available way of thinking amongst others. This is presented as something that should be considered a successful outcome when teaching about material that many students may find incompatible with their personal worldviews. These findings derive from work exploring a cause célèbre of the science education community—the teaching of natural selection in cultural contexts where learners feel they have strong reasons for rejecting evolutionary ideas. Accepting that students may understand but not commit to scientific ideas that are (from some cultural perspectives) controversial may easily be considered as a form of compromise position when teaching canonical science prescribed in curriculum but resisted by learners. Yet if we take scholarship on the nature of science seriously, and wish to reflect the nature of scientific knowledge in science teaching, then the aim of science education should always be to facilitate understanding of, yet to avoid belief in, the ideas taught in science lessons. The philosophy of science suggests that scientific knowledge needs to be understood as theoretical in nature, as conjectural and provisional; and the history of science warns of the risks of strongly committing to any particular conceptualisation as a final account of some feature of nature. Research into student thinking and learning in science suggests that learning science is often a matter of coming to understand a new viable way of thinking about a topic to complement established ways of thinking. Science teaching should then seek to have students appreciate scientific ideas as viable ways of making sense of the currently available empirical evidence, but should not be about persuading students of the truth of any particular scientific account.  相似文献   

15.
This essay considers the question of why we should teach science to K-2. After initial consideration of two traditional reasons for studying science, six assertions supporting the idea that even small children should be exposed to science are given. These are, in order: (1) Children naturally enjoy observing and thinking about nature. (2) Exposing students to science develops positive attitudes towards science. (3) Early exposure to scientific phenomena leads to better understanding of the scientific concepts studied later in a formal way. (4) The use of scientifically informed language at an early age influences the eventual development of scientific concepts. (5) Children can understand scientific concepts and reason scientifically. (6) Science is an efficient means for developing scientific thinking. Concrete illustrations of some of the ideas discussed in this essay, particularly, how language and prior knowledge may influence the development of scientific concepts, are then provided. The essay concludes by emphasizing that there is a window of opportunity that educators should exploit by presenting science as part of the curriculum in both kindergarten and the first years of primary school.  相似文献   

16.
17.
Science educators are confronted with the challenge to accommodate in their classes an increasing cultural and linguistic diversity that results from globalization. Challenged by the call to work towards valuing and keeping this diversity in the face of the canonical nature of school science discourse, we propose a new way of thinking about and investigating these problems. Drawing on the work of Mikhail Bakhtin, we articulate epicization and novelization as concepts that allow us to understand, respectively, the processes of (a) centralizing and homogenizing culture and language and (b) pluralizing culture and language. We present and analyze three examples that exhibit how existing mundane science education practices tend, by means of epicization, towards a unitary language and to cultural centralization. We then propose novelization as a way for thinking the opening up of science education by interacting with and incorporating alternative forms of knowing that arise from cultural diversity. © 2011 Wiley Periodicals, Inc. J Res Sci Teach 48: 824–847, 2011  相似文献   

18.

Science education communities around the world have increasingly emphasized engaging students in the disciplinary practices of science as they engage in high levels of reasoning about scientific ideas. Consistently, this is a critical moment in time in the USA as it goes through a new wave of science education reform within the context of Next Generation Science Standards (NGSS). We argue that the placement of high demands on students’ thinking (i.e., a high level of thinking) in combination with positioning students to use disciplinary practices as they try to make sense of scientific ideas (i.e., a deep kind of thinking) constitute critical aspects of the reform. The main purpose of this paper is to identify and describe the kinds and levels of thinking in which students engage when they are invited to think and reason as demanded by NGSS-aligned curricular tasks. Our analysis of video records of classrooms in which an NGSS-aligned, cognitively demanding task was used, revealed many ways in which the aspirational level and kind of student thinking will not be met in many science classrooms. We propose a way of characterizing and labeling the differences among these kinds and levels of thinking during the implementation of a reform-based biology curriculum. These categories, which focus on two important features emphasized in the NGSS, can help us to better understand, diagnose, and communicate issues during the implementation of high-level tasks in science classrooms.

  相似文献   

19.
Attaining the vision for science teaching and learning emphasized in the Framework for K‐12 Science Education and the next generation science standards (NGSS) will require major shifts in teaching practices in many science classrooms. As NGSS‐inspired cognitively demanding tasks begin to appear in more and more science classrooms, facilitating students' engagement in high‐level thinking as they work on these tasks will become an increasingly important instructional challenge to address. This study reports findings from a video‐based professional development effort (i.e., professional development [PD] that use video‐clips of instruction as the main artifact of practice to support teacher learning) to support teachers' learning to select cognitively demanding tasks and to support students' learning during the enactment of these tasks in ways that are aligned with the NGSS vision. Particularly, we focused on the NGSS's charge to get students to make sense of and deeply think about scientific ideas as students try to explain phenomena. Analyses of teachers' pre‐ and post‐PD instruction indicate that PD‐participants began to adopt instructional practices associated with facilitating these kinds of student thinking in their own classrooms. The study has implications for the design of video‐based professional development for science teachers who are learning to facilitate the NGSS vision in science classrooms.  相似文献   

20.
Studies of the philosophy of chemistry over the past 15 years suggest that chemistry is a hybrid science which mixes scientific pursuits with technological applications. Dominant universal characterizations of the nature of science thus fail to capture the essence of the discipline. The central goal of this position paper is to encourage reflection about the extent to which dominant views about quality science education based on universal views of scientific practices may constrain school chemistry. In particular, we discuss how these predominant ideas restrict the development of chemistry curricula and instructional approaches that may better support the learning of the ideas and practices that studies of the philosophy of chemistry suggest are at the core of the discipline. Our analysis suggests that philosophical studies about the nature of chemistry invite us to transgress traditional educational boundaries between science and technology, inquiry and design, content and process, and to reconceptualize school chemistry as a paradigmatic techno scientific subject. To support these changes, chemical education researchers should expand the scope of their investigations to better understand how students and teachers reason about and engage in more authentic ways of chemical thinking and doing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号