首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
直线和圆锥曲线的位置关系中,涉及弦的问题特别多,其中以弦的中点问题最为丰富多彩.中点弦问题是中学数学的一类重要问题,解决圆锥曲线的中点弦问题,有以下几种策略.1“设而不求”的策略例1已知P(1,1)为椭圆22194x+y=内一定点,过点P的弦AB被点P平分,求弦AB所在直线的方程.分析常规思路设直线AB的斜率为k由方程组求A、B的坐标,由AB的中点坐标建立k的方程求k,但注意到弦的中点坐标公式x=12(x1+x2),y=12(y1+y2),故可用韦达定理,绕过求交点的步骤.设所求直线的方程y=k(x?1)+1,并过A(x1,y1),B(x2,y2)两点,由方程组:22(1)1,1,94y k xx y????…  相似文献   

2.
1.中点坐标公式已知A、B为线段两端点,点A坐标为(x1,y1),点B坐标为(x2,y2),试求AB的中点C的坐标.  相似文献   

3.
处理直线与椭圆相交问题,采用设出交点坐标,但不求出,利用韦达定理和相关坐标去把问题转化,可巧妙解题下面用一例说明.例已知点P(4,2)是直线l被椭圆x236+y92=1所截得的线段的中点,求直线l的方程.分析本题考查直线与椭圆的位置关系问题,通常将直线方程与椭圆方程联立消去y(或x),得到关于x(或y)的一元二次方程,再由根与系数之间的关系,直接求出x1+x2,x1x2(或y1+y2、y1y2)的值代入计算即得,并不需要求出直线与椭圆的交点坐标,这种“设而不求”的方法在圆锥曲线中要经常用到.本题涉及到直线被椭圆截得弦的中点问题,也可采用点差法或中点坐标公…  相似文献   

4.
本文试图通过解几中常见的几类问题分门别类地阐述“三剑客”(斜率公式、中点坐标、根与系数关系)出没于江湖的着陆点,以及三者联袂表演的结合点,希望读者能够体会到他们的“英雄本色”.一、与中点弦及弦的中点有关的问题【例1】过点A(2,1)的直线与双曲线x2-y22=1交于P1,P2两点,求弦P1P2中点P的轨迹方程.分析1:设P1(x1,y1),P2(x2,y2),P1P2弦的中点P(x0,y0),则x21-y212=1x22-y222=1,作差得y1-y2x1-x2=2×x1+x2y1+y2=2×x0y0(中点坐标公式),而AP的斜率kAP=y0-1x0-2=kP1P2=y1-y2x1-x2,∴y0-1x0-2=2×x0y0,化简得:2x20-4x0=y20-y0,所以P…  相似文献   

5.
对称问题是高考热点,包括点关于点的对称、直线关于点的对称、点关于直线的对称、直线关于直线的对称,我们应熟练掌握。一、点P(x1,y1)关于点C(a,b)的对称点的坐标是(2a-x1,2b-y1)。点关于点的对称实质是中点坐标公式的应用。[例]已知点A(4,5),B(2,3),试求A点关于B点的对称点A’的坐标。解:设A’点坐标为(x,y),由中点坐标公式有:  相似文献   

6.
题已知椭圆的方程为x2/4 y2/2=1,点A 的坐标(1,1). (1)A为直线l与椭圆两交点的中点,求l 的方程; (2)求过点A的直线与椭圆的两交点的中点的轨迹方程.解 (1)设l与椭圆的交点分别为 (x1,y1),(x2,y2)(x1≠x2), 代入椭圆方程得  相似文献   

7.
1.点的对称例1 求点A(x1,y1)关于定点P(x0,y0)的对称点A’(x,y)的坐标. 解因为P是AA’的中点,所以x=2x0-x1,y=2y0-y1,即A'(2x0-x1,2y0-y1).  相似文献   

8.
“对称”是解析几何中的常见问题 ,也是一种重要的思想方法 .本文旨在对解析几何中的点对称、轴对称问题进行整理 ,以供学生参考 .1 关于点的对称(1)点关于点的对称问题 ,通常我们是将其化为中点问题来解决 .例如 ,求点P(x ,y)关于点M (x0 ,y0 )的对称点P′的坐标 .设P′(x′ ,y′) ,由M为|PP′|的中点 ,得  x+x′2 =x0y+ y′2 =y0 x′ =2x0 -x ,y′=2 y0 - y ,即所求对称点的坐标为P′(2x0 -x ,2 y0 - y) .(2 )曲线关于点的对称问题 ,利用对称定义 ,结合求轨迹方程的代入法即可解决 .例如 ,求曲线C :f(x ,y) =0关于M (x0 ,y0 )对…  相似文献   

9.
有些同学求轨迹方程时,直接就写出有关x、y的关系式,这是不严密的,应该是先设所求轨迹上的动点坐标为(x,y),再根据题意列方程,尤其是题目中有多个动点时,一般设所求轨迹上的动点坐标为(x,y),其他动点的坐标为(x1,y1)或(x0,y0)等。  相似文献   

10.
1问题众所周知,圆具有如下的性质:如果.AB是圆O:x2 y2=r2的一条弦(不包括直径),M(x0,y0)是弦AB的中点,那么OM⊥AB,从而当x0y0≠0时,有kOM·kAB=-1,而,故,也就是说:知道了弦的中点坐标我们便可以直接写出此弦的斜率.  相似文献   

11.
过定点M(x0,y0)作(常态)圆锥曲线Г:f(x,y)=Ax^2+Bxy+Cy^2+Dx+Ey+F=0(点M非曲线Г的中心)的弦l,若此弦被点M平分,则称弦l为中点弦.  相似文献   

12.
概念: (1)曲线C上的点的坐标都是方程f(x,y)=0的解; (2)以方程f(x,y)=0的解为坐标的点都是曲线C上的点, 称方程f(x,y)=0为曲线C的方程.充分利用曲线与方程的关系,可简化问题的求解. 例1 过点P(-1,1),作直线与椭圆x2/4+y2/2=1交于A、B两点,若线段AB的中点恰  相似文献   

13.
我们知道 ,平面解析几何中求动点的轨迹方程时 ,通常是假设该动点的坐标为 (x ,y) ,但在有些情况下 ,若将动点坐标直接设为(x ,y) ,则会给解题带来一些不便 .这时我们可以先假设动点为 (x0 ,y0 ) ,将 (x0 ,y0 )看成已知点 ,然后运用条件 ,得到关于 (x0 ,y0 )的方程 ,再将 (x0 ,y0 )换成动点坐标 (x ,y) ,从而得到动点的轨迹方程 .下面举数例予以说明 .例 1 长为 2 3的线段MN的两端点M ,N分别在大小为 12 0°的角AOB的两边OA、OB上移动 ,过M、N分别作PM ⊥OA ,PN⊥OB ,PM、PN交于P ,求P点的轨迹方程 .分析 本题是利用|MN|=2 …  相似文献   

14.
求满足一定条件的圆锥曲线的动弦中点轨迹是解几中的难点,通常的解法是将动弦参数方程与圆锥曲线方程联立,消去x(或y),得到关于y(或x)的一元二次方程,再利用韦达定理求出动弦中点坐标,最后消去参数,即得所求动  相似文献   

15.
设二次曲线F(x,y)=0(这里只研究缺x·y项的二次曲线)的动弦PQ的中点为M(x,y),构造P(x a,y b)、Q(x-a,y-b)(a≠0),当弦PQ存在斜率且记为k,k=b/a,于是点P、Q还可以以表示为P(x a,y ka)、Q(x-a,y-ka),那么|PQ|~2=4(a~2 b~2)=4a~2·(1 k~2),将P、Q坐标代入方程F(x,y)=0中,由坐标的对称性,可给解题带来极大的方使,我们来看下面几个问题。  相似文献   

16.
<正>在学习反比例函数时,有一道2013年河南省数学中考题引起了我们的兴趣:如图1,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(2,3).双曲线y=k/x(x> 0)的图象经过BC的中点D,且与AB交于点E.求k的值及点E的坐标;易得:k=3,E点坐标为(2,3/2),我们发现:此时点E为AB的中点.  相似文献   

17.
2004 年福建省高考理工 22 题,文史 21 题均涉及到如下命题: P 是抛物线C : y = x2 /2上一点,直线l 过点 P 且与抛物线C 交于另一点Q ,若直线l 与过点 P 的切线垂直,求线段PQ 中点 M 的轨迹方程. 上述命题中,线段 PQ为过切点且与切线垂直的弦,点 M 为线段 PQ 的中点.这是一道求受限动弦中点轨迹的问题,本文探究此类轨迹方程的一般形式,并予以推广. 定理 1 抛物线 x2 = 2py的弦 PQ垂直于过点 P 的切线,则 PQ中点M 的轨迹方程为 y = x2 / p p3 /(2x2) p . 证明 设 P(x1, y1),Q(x2, y2) ,M(x, y) ,由 y = x2 得 y'=…  相似文献   

18.
在平面解析几何中经常见到与对称相关的问题,而与对称相关问题中最基本的有以下四类:点关于点对称;点关于直线对称;直线关于点对称;直线关于直线对称·下面“将数的问题结合形的特点”介绍它们的解题方法·一、点关于点对称求P(a,b)关于点M(m,n)的对称点Q解析:设Q(x,y),结合图形分析·点M一定是线段PQ的中点,由中点坐标公式可得m=a2+x,n=b+2y,得x=2m-a,y=2n-b.∴Q(2m-a,2n-b)【例1】已知点A(1,2),点B(2,3),求点A关于点B的对称点·解:(利用中点坐标公式)设点A关于点B的对称点为A,(x1,y1)则1+2x1=2,2+2y1=3,∴x1=3y1=4∴点A关于点B的对…  相似文献   

19.
一、求曲线轨迹方程的步骤(1)建立直角坐标系,设动点坐标M(x,y);(2)列出动点M(x,y)满足的条件等式;(3)化简方程;(4)验证(可以省略);(5)说明方程的轨迹图形,补漏和去掉增多的点.  相似文献   

20.
数学中充满了对称,对称美是数学美的重要特征之一.直线中的对称问题,是直线方程中最基本的问题,也是历年高考中考查的热点问题,常见的直线对称问题有以下3种类型:1点关于直线的对称问题例1求点P(-4,3)关于直线l:2x 3y-6=0的对称点P′的坐标.解设P′的坐标为(x,y),则线段PP′的中点坐标为x2-4,32 y.PP′的斜率为yx- 43,直线l的斜率为-32.因为PP′⊥l且PP′的中点在l上,所以y-3x 4·(-23)=-1,2·x2-4 3·y2 3-6=0x=-1332,y=1639·即P′的坐标为-1323,1639.2直线关于点的对称问题例2求直线l:3x-y 1=0关于点M(2,-4)对称的直线方程.解在所…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号