首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in medical education have affected both curriculum design and delivery. Many medical schools now use integrated curricula and a systemic approach, with reduced hours of anatomy teaching. While learning anatomy via dissection is invaluable in educational, professional, and personal development, it is time intensive and supports a regional approach to learning anatomy; the use of prosections has replaced dissection as the main teaching method in many medical schools. In our graduate‐entry medical degree, we use an integrated curriculum, with prosections to teach anatomy systemically. However, to not exclude dissection completely, and to expose students to its additional and unique benefits, we implemented a short “Dissection Experience” at the beginning of Year 2. Students attended three two‐hour anatomy sessions and participated in dissection of the clinically relevant areas of the cubital fossa, femoral triangle, and infraclavicular region. This activity was voluntary and we retrospectively surveyed all students to ascertain factors influencing their decision of whether to participate in this activity, and to obtain feedback from those students who did participate. The main reasons students did not participate were previous dissection experience and time constraints. The reasons most strongly affecting students' decisions to participate related to experience (lack of previous or new) and new skill. Students' responses as to the most beneficial component of the dissection experience were based around practical skills, anatomical education, the learning process, and the body donors. We report here on the benefits and practicalities of including a short dissection experience in a systemic, prosection‐based anatomy course. Anat Sci Educ 6: 225–231. © 2013 American Association of Anatomists.  相似文献   

2.
Cadaveric prosections are effective learning tools in anatomy education. They range from a fully dissected, sometimes plastinated, complete cadaver (in situ prosections), to a single, carefully dissected structure detached from a cadaver (ex situ prosections). While most research has focused on the advantages and disadvantages of dissection versus prosection, limited information is available on the instructional efficacy of different prosection types. This contribution explored potential differences between in situ and ex situ prosections regarding the ability of undergraduate students to identify anatomical structures. To determine if students were able to recognize the same anatomical structure on both in situ and ex situ prosections, or on either one individually, six structures were tagged on both prosection types as part of three course summative examinations. The majority of students (61%–68%) fell into one of the two categories: those that recognized or failed to recognize the same structure on both in situ and ex situ prosections. The percentage of students who recognized a selected structure on only one type of prosection was small (1.6%–31.6%), but skewed in favor of ex situ prosections (P ≤ 0.01). These results suggest that overall students' identification ability was due to knowledge differences, not the spatial or contextual challenges posed by each type of prosection. They also suggest that the relative difficulty of either prosection type depends on the nature of the anatomical structure. Thus, one type of prosection might be more appropriate for teaching some structures, and therefore the use of both types is recommended.  相似文献   

3.
Traditional dissection teaching is being reduced in a number of medical schools, particularly in the United Kingdom. In response to this, 12 medical students from Warwick University, UK, traveled to the Island of Grenada for an intensive extracurricular dissection course at St. George's University. This course not only benefited the host university through the creation of prosections for teaching but also allowed the participants to completely immerse themselves in anatomical study, by developing their dissection skills and consolidating anatomical knowledge. We believe that similar courses could be easily implemented by other medical schools, thereby allowing future students to keep traditional dissection alive. Anat Sci Educ 2: 302–303, 2009. © 2009 American Association of Anatomists.  相似文献   

4.
The role of human dissection in modern medical curricula has been a topic of intense debate. In part, this is because dissection can be time-consuming and curricular hours are being monitored more carefully. This has led some to question the efficacy and importance of dissection as a teaching method. While this topic has received considerable attention in the literature, the question of how dissection impacts learning has been difficult to evaluate in a real-world, high-stakes setting since participation in dissection is often one of many variables. In this study, this challenge was overcome due to a change in the curriculum of a Special Master Program (SMP) that permitted a comparison between two years of students that learned anatomy using prosection only and two years of students that participated in dissection laboratories. Since each class of SMP students took courses in the medical school, and the medical school anatomy curriculum was constant, medical student performance served as a control throughout the study period. Results demonstrate that SMP students who learned through prosection had lower performance on anatomy practical and written examinations compared to medical students. When the SMP program changed and students started participating in dissection, there were measurable improvements in both practical and written examinations. These findings provide evidence of dissection’s role in learning and applying anatomy knowledge both within and outside the gross anatomy laboratory.  相似文献   

5.
The purpose of this study was to evaluate the extracurricular cadaveric dissection program available to medical students at an institution with a modern (time‐compressed, student‐centered, and prosection‐based) approach to medical anatomy education. Quantitative (Likert‐style questions) and qualitative data (thematic analysis of open‐ended commentary) were collated from a survey of three medical student cohorts who had completed preclerkship. Perceived benefits of dissection included the hands‐on learning style and the development of anatomy expertise, while the main barrier that limited participation was the time‐intensive nature of dissection. Despite perceived benefits, students preferred that dissection remain optional. Analysis of assessments for the MD2016 cohort revealed that dissection participation was associated with enhanced performance on anatomy items in each systems‐based unit examination, with the largest benefits observed on discriminating items that assessed knowledge application. In conclusion, this study revealed that there are academic and perceived benefits of extracurricular participation in dissection. While millennial medical students recognized these benefits, these students also indicated strong preference for having flexibility and choice in their anatomy education, including the choice to participate in cadaveric dissection. Anat Sci Educ 11: 294–302. © 2017 American Association of Anatomists.  相似文献   

6.
The anatomical sciences have always been regarded as an essential component of medical education. In Canada, the methodology and time dedicated to anatomy teaching are currently unknown. Two surveys were administered to course directors and discipline leaders to gain a comprehensive view of anatomical education in Canadian medical schools. Participants were queried about contact hours (classroom and laboratory), content delivery and assessment methods for gross anatomy, histology, and embryology. Twelve schools responded to both surveys, for an overall response rate of 64%. Overall, Canadian medical students spend 92.8 (± 45.4) hours (mean ± SD) studying gross anatomy, 25.2 (± 21.0) hours for histology, and 7.4 (± 4.3) hours for embryology. Gross anatomy contact hours statistically significantly exceeded those for histology and embryology. Results show that most content is delivered in the first year of medical school, as anatomy is a foundational building block for upper-year courses. Laboratory contact time for gross anatomy was 56.8 (± 30.7) hours, histology was 11.4 (± 16.2) hours, and embryology was 0.25 (± 0.6) hours. Additionally, 42% of programs predominantly used instructor/technician-made prosections, another 33% used a mix of dissection and prosections and 25% have their students complete cadaveric dissections. Teaching is either completely or partially integrated into all Canadian medical curricula. This integration trend in Canada parallels those of other medical schools around the world where programs have begun to decrease contact time in anatomy and increase integration of the anatomical sciences into other courses. Compared to published American data, Canadian schools offer less contact time. The reason for this gap is unknown. Further investigation is required to determine if the amount of anatomical science education within medical school affects students' performance in clerkship, residency and beyond.  相似文献   

7.
Anatomy instruction has evolved over the past two decades as many medical schools have undergone various types of curricular reform. To provide empirical evidence about whether or not curricular changes impact the acquisition and retention of anatomy knowledge, this study investigated the effect of variation in gross anatomy course hours, curricular approach (stand‐alone versus integrated), and laboratory experience (dissection versus dissection and prosection) on USMLE Steps 1 and 2 Clinical Knowledge (CK) scores. Gross anatomy course directors at 54 United States schools provided information about their gross anatomy courses via an online survey (response rate of 42%). Survey responses were matched with USMLE scores for 6,411 examinees entering LCME‐accredited schools in 2007 and taking Step 1 for the first time in 2009. Regression analyses were conducted to examine relationships between gross anatomy instructional characteristics and USMLE performance. Step 1 total scores, Step 1 gross anatomy sub‐scores, and Step 2 CK scores were unrelated to instructional hours, controlling for MCAT scores. Examinees from schools with integrated curricula scored slightly lower on Steps 1 and 2 CK than those from stand‐alone courses (effect sizes of 2.1 and 1.9 on score scales with SDs of 22 and 20, respectively). Examinees with dissection and prosection experience performed slightly better on Step 2 CK than examinees in courses with dissection only laboratories (effect size of 1.2). Results suggest variation in course hours is unrelated to performance on Steps 1 and 2 CK. Although differences were observed in relation to curricular approach and laboratory experience, effect sizes were small. Anat Sci Educ 6: 3–10. © 2012 American Association of Anatomists.  相似文献   

8.
The dissecting competition in progress at the Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand. In this issue of ASE, Drs. Samalia and Stringer describe a dissecting competition for third year medical students. Working alone, students undertake a detailed dissection during a single weekend day and present an appropriately labeled prosection, together with a 300 word abstract emphasizing the clinical relevance of their work. Dissections are judged on presentation, accuracy of labeling, and relevance to the clinical abstract.  相似文献   

9.
For centuries, cadaveric material has been the cornerstone of anatomical education. For reasons of changes in curriculum emphasis, cost, availability, expertise, and ethical concerns, several medical schools have replaced wet cadaveric specimens with plastinated prosections, plastic models, imaging, and digital models. Discussions about the qualities and limitations of these alternative teaching resources are on‐going. We hypothesize that three‐dimensional printed (3DP) models can replace or indeed enhance existing resources for anatomical education. A novel multi‐colored and multi‐material 3DP model of the upper limb was developed based on a plastinated upper limb prosection, capturing muscles, nerves, arteries and bones with a spatial resolution of ~1 mm. This study aims to examine the educational value of the 3DP model from the learner's point of view. Students (n = 15) compared the developed 3DP models with the plastinated prosections, and provided their views on their learning experience using 3DP models using a survey and focus group discussion. Anatomical features in 3DP models were rated as accurate by all students. Several positive aspects of 3DP models were highlighted, such as the color coding by tissue type, flexibility and that less care was needed in the handling and examination of the specimen than plastinated specimens which facilitated the appreciation of relations between the anatomical structures. However, students reported that anatomical features in 3DP models are less realistic compared to the plastinated specimens. Multi‐colored, multi‐material 3DP models are a valuable resource for anatomical education and an excellent adjunct to wet cadaveric or plastinated prosections. Anat Sci Educ 11: 54–64. © 2017 American Association of Anatomists.  相似文献   

10.
Anatomy has historically been a cornerstone in medical education regardless of nation or specialty. Until recently, dissection and didactic lectures were its sole pedagogy. Teaching methodology has been revolutionized with more reliance on models, imaging, simulation, and the Internet to further consolidate and enhance the learning experience. Moreover, modern medical curricula are giving less importance to anatomy education and to the acknowledged value of dissection. Universities have even abandoned dissection completely in favor of user‐friendly multimedia, alternative teaching approaches, and newly defined priorities in clinical practice. Anatomy curriculum is undergoing international reformation but the current framework lacks uniformity among institutions. Optimal learning content can be categorized into the following modalities: (1) dissection/prosection, (2) interactive multimedia, (3) procedural anatomy, (4) surface and clinical anatomy, and (5) imaging. The importance of multimodal teaching, with examples suggested in this article, has been widely recognized and assessed. Nevertheless, there are still ongoing limitations in anatomy teaching. Substantial problems consist of diminished allotted dissection time and the number of qualified anatomy instructors, which will eventually deteriorate the quality of education. Alternative resources and strategies are discussed in an attempt to tackle these genuine concerns. The challenges are to reinstate more effective teaching and learning tools while maintaining the beneficial values of orthodox dissection. The UK has a reputable medical education but its quality could be improved by observing international frameworks. The heavy penalty of not concentrating on sufficient anatomy education will inevitably lead to incompetent anatomists and healthcare professionals, leaving patients to face dire repercussions. Anat Sci Educ 3: 83–93, 2010. © 2010 American Association of Anatomists.  相似文献   

11.
After repeated requests from medical students for more cadaver dissection opportunities, a voluntary dissecting "competition" was initiated for the third year medical students in 2006. This has been held annually on five occasions since, offering up to 30 dissection stations and accommodating an average of 53 students (range 40-66) per year, representing about 20-25% of the total class. Material is standardized to distal upper or lower limb specimens, each of which is dissected by one or two students during a single weekend day. Participants are required to complete their dissection in about six hours and present an appropriately labeled display together with a 300 word abstract, emphasizing clinical relevance. Dissections are judged on presentation, accuracy of identification and labeling, and relevance to the clinical abstract, taking into account the technical difficulty of the particular dissection. Judging from successive annual uptake of places and informal feedback, this is not only a popular event allowing students to focus creatively on producing a clinically relevant dissection in a relaxed learning environment but also of educational value. An unexpected outcome has been the production of many specimens suitable as prosections for future classes. A dissecting competition may be a useful method of stimulating learning for medical students interested in undertaking further dissection but it requires appropriate staff commitment and a supply of suitable cadaver specimens.  相似文献   

12.
Due to the current trend of decreasing contact hours and less emphasis being given to the basic science courses in the pre-clinical years of medical education, it is essential that new approaches to teaching gross anatomy are investigated to ensure medical students are being adequately exposed to anatomical content. This study retrospectively analyzed practical examination data from four medical gross anatomy classes (N = 569) to ascertain which pedagogical approach, student participation in the dissection process, or interaction with prosected specimens is best for teaching the anatomy of the hand and foot. Data analysis involved the use of propensity score matching, a nonparametric preprocessing statistical approach which ensures accurate representation of the true treatment effect by balancing cohorts prior to statistical analysis. Statistical analysis indicated that those students who were exposed to the anatomy of the hand through interactions with prosected specimens performed 5.6% better (P = 0.012) while for the foot, students who interacted with prosections performed 13.0% better (P < 0.001). Although limited, data from this study suggest that utilizing prosections of the hand and foot seems to be a more advantageous pedagogical approach for teaching these regions than requiring students to dissect them.  相似文献   

13.
A novel three-dimensional tool for teaching human neuroanatomy   总被引:1,自引:0,他引:1  
Three‐dimensional (3D) visualization of neuroanatomy can be challenging for medical students. This knowledge is essential in order for students to correlate cross‐sectional neuroanatomy and whole brain specimens within neuroscience curricula and to interpret clinical and radiological information as clinicians or researchers. This study implemented and evaluated a new tool for teaching 3D neuroanatomy to first‐year medical students at Boston University School of Medicine. Students were randomized into experimental and control classrooms. All students were taught neuroanatomy according to traditional 2D methods. Then, during laboratory review, the experimental group constructed 3D color‐coded physical models of the periventricular structures, while the control group re‐examined 2D brain cross‐sections. At the end of the course, 2D and 3D spatial relationships of the brain and preferred learning styles were assessed in both groups. The overall quiz scores for the experimental group were significantly higher than the control group (t(85) = 2.02, P < 0.05). However, when the questions were divided into those requiring either 2D or 3D visualization, only the scores for the 3D questions were significantly higher in the experimental group (F1,85= 5.48, P = 0.02). When surveyed, 84% of students recommended repeating the 3D activity for future laboratories, and this preference was equally distributed across preferred learning styles (χ2 = 0.14, n.s.). Our results suggest that our 3D physical modeling activity is an effective method for teaching spatial relationships of brain anatomy and will better prepare students for visualization of 3D neuroanatomy, a skill essential for higher education in neuroscience, neurology, and neurosurgery. Anat Sci Educ. © 2010 American Association of Anatomists.  相似文献   

14.
Human anatomy education often utilizes the essential practices of cadaver dissection and examination of prosected specimens. However, these exposures to human cadavers and confronting death can be stressful and anxiety‐inducing for students. This study aims to understand the attitudes, reactions, fears, and states of anxiety that speech therapy students experience in the dissection room. To that end, a before‐and‐after cross‐sectional analysis was conducted with speech therapy students undertaking a dissection course for the first time. An anonymous questionnaire was administered before and after the exercise to understand students' feelings and emotions. State‐Trait Anxiety Inventory questionnaires (STAI‐S and STAI‐T) were used to evaluate anxiety levels. The results of the study revealed that baseline anxiety levels measured using the STAI‐T remained stable and unchanged during the dissection room experience (P > 0.05). Levels of emotional anxiety measured using the STAI‐S decreased, from 15.3 to 11.1 points (P < 0.05). In the initial phase of the study, before any contact with the dissection room environment, 17% of students experienced anxiety, and this rate remained unchanged by end of the session (P > 0.05). A total of 63.4% of students described having thoughts about life and death. After the session, 100% of students recommended the dissection exercise, giving it a mean score of 9.1/10 points. Anatomy is an important subject for students in the health sciences, and dissection and prosection exercises frequently involve a series of uncomfortable and stressful experiences. Experiences in the dissection room may challenge some students' emotional equilibria. However, students consider the exercise to be very useful in their education and recommend it. Anat Sci Educ 10: 487–494. © 2017 American Association of Anatomists.  相似文献   

15.
This study compared the efficacy of two cardiac anatomy teaching modalities, ultrasound imaging and cadaveric prosections, for learning cardiac gross anatomy. One hundred and eight first-year medical students participated. Two weeks prior to the teaching intervention, students completed a pretest to assess their prior knowledge and to ensure that groups were equally randomized. Students, divided into pre-existing teaching groups, were assigned to one of two conditions; "cadaver" or "ultrasound." Those in the cadaver group received teaching on the heart using prosections, whereas the ultrasound group received teaching using live ultrasound images of the heart. Immediately after teaching, students sat a post-test. Both teaching modalities increased students' test scores by similar amounts but no significant difference was found between the two conditions, suggesting that both prosections and ultrasound are equally effective methods for teaching gross anatomy of the heart. Our data support the inclusion of either cadaveric teaching or living anatomy using ultrasound within the undergraduate anatomy curriculum, and further work is needed to compare the additive effect of the two modalities.  相似文献   

16.
Anatomy teaching methods have evolved as the medical undergraduate curriculum has modernized. Traditional teaching methods of dissection, prosection, tutorials and lectures are now supplemented by anatomical models and e‐learning. Despite these changes, the preferences of medical students and anatomy faculty towards both traditional and contemporary teaching methods and tools are largely unknown. This study quantified medical student and anatomy faculty opinion on various aspects of anatomical teaching at the Department of Anatomy, University of Bristol, UK. A questionnaire was used to explore the perceived effectiveness of different anatomical teaching methods and tools among anatomy faculty (AF) and medical students in year one (Y1) and year two (Y2). A total of 370 preclinical medical students entered the study (76% response rate). Responses were quantified and intergroup comparisons were made. All students and AF were strongly in favor of access to cadaveric specimens and supported traditional methods of small‐group teaching with medically qualified demonstrators. Other teaching methods, including e‐learning, anatomical models and surgical videos, were considered useful educational tools. In several areas there was disharmony between the opinions of AF and medical students. This study emphasizes the importance of collecting student preferences to optimize teaching methods used in the undergraduate anatomy curriculum. Anat Sci Educ 7: 262–272. © 2013 American Association of Anatomists.  相似文献   

17.
Ultrasound use has expanded dramatically among the medical specialties for diagnostic and interventional purposes, due to its affordability, portability, and practicality. This imaging modality, which permits real‐time visualization of anatomic structures and relationships in vivo, holds potential for pre‐clinical instruction of students in anatomy and physical diagnosis, as well as providing a bridge to the eventual use of bedside ultrasound by clinicians to assess patients and guide invasive procedures. In many studies, but not all, improved understanding of anatomy has been demonstrated, and in others, improved accuracy in selected aspects of physical diagnosis is evident. Most students have expressed a highly favorable impression of this technology for anatomy education when surveyed. Logistic issues or obstacles to the integration of ultrasound imaging into anatomy teaching appear to be readily overcome. The enthusiasm of students and anatomists for teaching with ultrasound has led to widespread implementation of ultrasound‐based teaching initiatives in medical schools the world over, including some with integration throughout the entire curriculum; a trend that likely will continue to grow. Anat Sci Educ 10: 176–189. © 2016 American Association of Anatomists.  相似文献   

18.
The anatomy curriculum at Namibia's first, and currently only, medical school is clinically oriented, outcome-based, and includes all of the components of modern anatomical sciences i.e., histology, embryology, neuroanatomy, gross, and clinical anatomy. The design of the facilities and the equipment incorporated into these facilities were directed toward simplification of work flow and ease of use by faculty, staff, and students. From the onset, the integration of state of the art technology was pursued to facilitate teaching and promote a student-centered pedagogical approach to dissections. The program, as realized, is comprised of three 16-week semesters with seven hours of contact time per week, namely three hours of lectures and four hours of dissection laboratory and microscopy time. Set outcomes were established, each revolving around clinical cases with integrated medical imaging. The design of the facility itself was not constrained by a legacy structure, allowing the School of Medicine, in collaboration with architects and contractors, to design the building from scratch. A design was implemented that allows for the sequential processing of cadaveric material in a unidirectional flow from reception, to preparation, embalming, storage, dissection, and maceration. Importantly, the odor of formaldehyde typically associated with anatomy facilities was eliminated outside of the dissection areas and minimized within via a high-performance ventilation system. By holistically incorporating an integrated curriculum, facility design, and teaching at an early stage, the authors believe they have created a system that might serve as a model for new anatomy programs.  相似文献   

19.
Hands-on dissection-based learning of anatomy offers an unique and valued experience for medical students. Too often however, the inexperienced student's focus is to avoid damage to unfamiliar structures instead of understanding spatial relationships between structures. This results in unfortunate surrender of a critical learning experience. Additionally, approaches to dissection and anatomic exposure share little alignment to clinical approaches, making it less powerful in clinical applicability. The goal of this viewpoint commentary is based on the experience of the two authors and aims to demonstrate opportunity to introduce clinical approaches for dissection while incorporating relevant anatomical concepts in medical school curriculum that aligns with authentic healthcare practice. Using the dissections of the superficial face as a relevant and current topic of clinical interest, we point out that applying the currently performed dissection approach (medial-to-lateral) falls short of providing sufficient knowledge and understanding of the layered arrangement of facial structures. The lateral-to-medial approach, as performed in surgical face lifting procedures would offer a better understanding of the layers of the face and especially the superficial musculoaponeurotic system (SMAS) accounting for the difficulties of facial dissections on embalmed cadavers. This commentary could offer a potential change in paradigm for students and course facilitators for how to maximize the knowledge transfer during facial dissections. It potentially opens a door to rethink dissection-based learning of anatomy toward techniques and approaches that are aligned to surgical access pathways and thus considered more clinically relevant.  相似文献   

20.
Pre‐clinical anatomy curricula must provide medical students with the knowledge needed in a variety of medical and surgical specialties. But do physicians within specialties agree about what anatomical knowledge is most important in their practices? And, what is the common core of anatomical knowledge deemed essential by physicians in different specialties? Answers to these questions would be useful in designing pre‐clinical anatomy courses. The primary aim of this study was to assess the importance of a human gross anatomy course by soliciting the opinions of physicians from a range of specialties. We surveyed 93 physicians to determine the importance of specific anatomical topics in their own practices. Their responses were analyzed to assess variation in intra‐ and inter‐departmental attitudes toward the importance of anatomy. Nearly all of the topics taught in the course were deemed important by the clinicians as a group, but respondents showed little agreement on the rank order of importance of anatomical topics. Overall, only medical imaging received high importance by nearly all respondents, and lower importance was attached to embryology and lymphatic anatomy. Our survey data, however, also suggested distinct hierarchies in the importance assigned to anatomical topics within specialties. Given that physicians view the importance of anatomy differently, we suggest that students revisit anatomy through a vertically integrated curriculum tailored to provide specialty‐specific anatomical training to advanced students based on their areas of clinical interest. Integration of medical imaging into pre‐clinical anatomy courses, already underway in many medical schools, is of high clinical relevance. Anat Sci Educ 7: 251–261. © 2013 American Association of Anatomists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号