首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在中学代数中,均值不等式指的是算术——几何平均值不等式:若a_i>0(i=1,2,…,n),则(a_1 a_2 … a_n)/n≥(a_1a_2…a_n,)~(n/(a_1a_2…a_n,))当且仅当a_1=a_2=…=a_n时,上式取等号(中学只讲二元、三元均值不等式)。  相似文献   

2.
<正>一、数列本身各部分知识的综合例1已知各项均为正数的数列{a_n}的前n项和为S_n,且满足S_1>1,6S_n=(a_n+1)(a_n+2),n∈N_+,求{a_n}的通项公式。解析:利用n≥2时S_n-S_(n-1)=a_n将已知条件6S_n=(a_n+1)(a_n+2),n∈N+转化为a_n与a_(n-1)之间的关系。由a_1=S_1=1/6(a_1+1)(a_1+2),解得a_1=1或a_1=2,由假设a_1=S_1>1,因此a_1=2。又由a_(n+1)=S_n+1-  相似文献   

3.
<正>求数列通项在高考中属于常考内容,本文归纳整理了几种方法,供参考.一、已知a_1和a_n=a_(n-1)+f(n)型,其中f(n)可求和例1已知数列{a_n}满足a_(n+1)=a_n+3n+2,且a_1=2,求a_n.解由a_(n+1)=a_n+3n+2知a_(n+1)-a_n=3n+2,a_n-a_(n-1)=3n-1.a_n=(a_n-a_(n-1))+(a_(n-1)-a_(n-2))+…+(a_2-a_1)+a_1=(3n-1)+(3n-4)+……+5+2  相似文献   

4.
已知数列{a_n}中,a_1=p,a_(n 1)=qa_n r,求通项公式a_n,其中p、q、r为常数,且q≠0,q≠1。 显然r=0时,a_(n 1)=qa_n,这时{a_n}为等比数列,易推得a_n=pq~(n-1);当r≠0,q=1,a_(n 1)=a_n r,{a_n}是等差数列,易推得a_n=a_1 (n-1)r。  相似文献   

5.
形如a_(n 1)=pa_n q(p·£≠0,且P≠1)在历年来的高考中屡次出现,足以说明这类数列递推公式应用之广。现举数例说明。处理方法:a_(n 1)=pa_n q可变形为a_(n 1) c=p(a_n c)即a_(n 1) =pa_n c(p-1),令c(p-1)=q,解得c=q/p-1,从而构造等比数例q_(an) q/(p-1)分解它。例1、己知数列[an]满足a_1=1,a_(n 1)=2a_n 1(n≥1,n为自然数)求数列[a_n]的通项公式,(06年福建理工高考试题22题第一小题)解∵a_(n 1)=2a_n 1∴a_(n 1) 1=2(a_n 1)∵[a_n]是以a_n 1=2为首项,公比为2的等比数列  相似文献   

6.
现行高中数学课本的等差数列、等比数列的通项公式 a_n=a_1+(n-1)d ① a_n=a_1q~(n-1) ②如果把①改写成 a_n=a_(n-1)+d(首项a_1=a)③把②改写成 a_n=a_(n-1)q(首项a_1=a) ④则③和④就是递推数列。一个数列{a_n},如果对于每一个自然数n,有一种规则将a_(n+1)同a_n联系起来,就  相似文献   

7.
<正>柯西不等式:设a_1,a_2,…,a_n;b_1,b_2,…,b_n是两组实数,则有n∑k=1a_k2·n∑k=1b_k2·n∑k=1b_k2≥(n∑k=1a_kb_k)2≥(n∑k=1a_kb_k)2。其中等号成立当且仅当a_1:a_2:…:a_n=b_1:b_2:…:b_n。推论:设a_1,a_2,…,a_n是正实数,则(a_1+a_2+…+a_n)(1/a_1+1/a_2+…+1/a_n)≥n2。其中等号成立当且仅当a_1:a_2:…:a_n=b_1:b_2:…:b_n。推论:设a_1,a_2,…,a_n是正实数,则(a_1+a_2+…+a_n)(1/a_1+1/a_2+…+1/a_n)≥n2,其中等号成立当且仅当a_1=a_2=…=a_n。  相似文献   

8.
不等式是中学数学教学的重点和难点,各种杂志已介绍了不同的方法,本文将通过构造函数,巧妙地解决某些不等式问题. 例1 设a_k>0(k=1,2,3,…,n),且a_1a_2…a_n≥1。求证: (a_1 a_2 … a_n)/n n/(a_1 a_2 … a_n)≥≥(a_1a_2…a_n)~(1/n) 1/(a_1a_2…a_n)~(1/n)≥1,  相似文献   

9.
设数列{a_n}是公差为d(d≠0)的等差数列。若令a_0=a_1-d,a_(n 1)=a_n d,则① a_1 a_2 … a_n=(1/2d)(a_na_(n 1)-a_0a_1); ② a_1~3 a_2~3 … a_n~3=(1/4d)[(a_na_(n 1))~2-(a_0a_1)~2]。证①∵ a_ka_(k 1)-a_(k-1)a_k=a_k(a_(k 1)-a_(k-1)=2da_k,k=1,2,…。令k=1,2,…,n, 得n个等式,将它们的两边分别相加得 a_na_(a 1)-a_0a_1=2d(a_1 a_2 … a_n)。∴ a_1 a_2 … a_n=(1/(2d))(a_na_(n 1)-a_0a_1)。②∵ (a_ka_(k 1))~2-(a_(k-1)a_k)~2=a_k~2[a_(k 1)~2  相似文献   

10.
试题:各项均为正数的数列{a_n}满足a_1= 2,a_n=a_n~(3/2) _1a_(n 2),n∈N~*.(1)若a_2=1/4,求a_3,a_4,并猜想a_(2008)的值(不需证明);(2)记b_n=a_1a_2…a_n(n∈N~*),若b_n≥22~(1/2)对n≥2恒成立,求a_2的值及数列{b_n}的通项公式.  相似文献   

11.
大家知道,公差是d的数列{a_n}的通项为:a_n=a_1 (n-1)d,即a_n=dn (a_1-d),可以把它看做n的一次函数,其图像是以d为斜率,纵轴截距为a_1-d的一条直线。当n∈N时,在直线上的对应点为(1,a_1),(2,a_2)…,(n,a_n)的点集,是该直线点集的一个子集。我们可以利用这种关系,巧解有关等差数列问题。例1 已知等差数列{a_n}的项a_m=n,a_n=m(m≠  相似文献   

12.
裂项相消法     
一般地,若数列a_1,a_2,a_3,…,a_n,存在a_n=b_n-b_(n 1),则有a_1 a_2 a_3 … a_n=b_1-b_2 b_2-b_3 … b_n-b_(n 1)=b_1-b_(n 1).这就是裂项相消法。这个方法在化简、求值、证明诸方面有着广泛的应用。但关系式a_n=b_n-b_(n 1)涉及许多数学知识,推出时亦存在一定难度与技巧。本文特将常见者分类辑之如下。  相似文献   

13.
两恒等式a_n=a_1·(a_2/a_1)……(a_n/a_(n-1))及a_n=a_1+(a_2-a_1)+…+(a_n-a_(n-1))分别被称之为等比恒等式与等差恒等式。在处理很多数列问题时,若能恰到好处地利用这两个恒等式,则会给求解带来很多方便,下面略举几例。 例1 (2002年浙江等21省市高考题)设数列{a_n}满足a_(n+1)=a_n~2-na_n+1,n∈N~+。 (1)当a_1=2时,求a_2、a_3、a_4,并由此猜想出a_n的一个通项公式。 (2)当a_1≥3时,证明对所有的n≥1有: (i)a_n≥n+2; (ii)1/(1+a_1)+1/(1+a_2)+…+1/(1+a_n)≥1/2。 简解:(1)略。 (2)(i)用数学归纳法:①当n=1,a_1≥3=1+2结论成立。  相似文献   

14.
当a_1,a_2,…,a_n为正实数时,有 1/n sum from i=1 to n(a_i~n)≥multiply from i=1 to n(a_i)当且仅当a_1=a_2=…=a_n时取等号。事实上,该不等式可用(sum from i=1 to n(1/n)a_i)~n分隔,即(1/n)sum from i=1 to n(a_i~n)≥((1/n)sum from i=1 to n(a_i))~n≥multiply from i=1 to n(a_i)当且仅当a_1=a_2=…=a_n时取等号。  相似文献   

15.
珠联璧合     
1.问题:数列{a_n}中,已知a1=0a2=1,a_(n+1)=n(a_n+a_(n-1),求通项a_n 2.问题背景:n个元素m1,m2,…,m_n重新排列不排在原来位置的排列种数记为a_n,求a_n.1 2 3 4 5… n十1个元素重新排列不排在原来位置的排法为a_(n+1). a1不在1号位,则a1有n种排法. a2排在1号位,其它n-1个元素不排在原来位置的排法有a_(n-1)种. a2不排在1号位,则除a2的其它n个元素不排在原来位置的排法有a_n种. 所以a_(n+1)=n(a_n+a_(n-1),显然a1=0,a2=1.  相似文献   

16.
《高中数学第三册教学参考书》给出了算术——几何平均值不等式的两种归纳法证明。(其中一种是用反向归纳法)。但是,这两个证明都比较繁、从历史角度来看(参看[1]),用通常的数学归纳法来证明这一不等式也是较困难的事。因此,在这里我们介绍它的一些较简单的归纳法证明,供大家数学时选用,参考。算术——几何平均值不等式指: 定理当a_i,i=1,2,…,n,为正数时,有 (a_1 a_2 … a_n)/n≥(a_1a_2…a_n)~(1/n) (1)式中等号当且仅当a_1=a_2=…=a_n时成立, 为了方便,今后我们使用下列记号: A_n=(a_1 a_2 … a_n)/n,G_n=(a_1a_2…a_n)~(1/n) 当a_1=a_2=…=a_n时,(1)式中等号成立是显然的。故下面我们只须证明,当a_1,a_2,…,a_n不全相等时,必有A_n>G_n,即达目的。  相似文献   

17.
数列递推公式的意义:若已知数列的第一项a_1且任一项a_n与前一项a_(n-1)之间的关系可以用一个公式表示.类型1形如a_(n+1)=a_n+f(n).解法:把原递推公式转化为a_(n+1)-a_n=f(n),利用累加法(逐差相加法)求解.例1已知数列{a_n}满足a_1=1/2,a_(n+1)=  相似文献   

18.
<正>类型一:累加法形如:a_n=a_(n-1)+f(n)(其中f(n)不是常值函数)例1已知数列{a_n}满足a_1=3,2/a_n-a_(n+1)=n(n+1),则a_n=____。方法指导:先将递推公式变形为a_n-a_(n-1)=f(n),令n=2,3,4,…,n,再将这n-1个式子相加,得a_n-a_1=f(2)+f(3)+…+f(n)。所以,a_n=a_1+f(2)+f(3)+…+f(n)=a_1+  相似文献   

19.
我们知道:如果a_i∈R~+ i=1,2,…,n,则((a_1+a_2+…a_n)/n≥(a_1a_2…a_n)~(1/n)当且仅当a_1=a_2=a_3…=a_n时取“=”号),被称为“均值定理”。许多极(最)值问题,利用这个平均值不等式常常很简洁地得到解决,本文通过数例。对利用其求极(最)值时常见错误进行剖析。  相似文献   

20.
数列{a_n}中,a_1=1,a_(n+1)=1/(16)(1+4a_n+(1+24a_n)~(1/2)),求a_n.解:构建新数列{b_n},使b_n=(1+24a_n)~(1/2)>0,则b_1=5,b_n~2=1+24a_n(?)a_n=(b_n~2-1)/(24).由a_(n+1=1/16(1+4a_n+(1+24a_n)~(1/2)),得(b_(n+1)~2-1)/(24)=  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号