首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Abstract

Accelerometry is increasingly used as a physical activity surveillance device that can quantify the amount of time spent moving at a range of intensities. This study proposes physical activity intensity cut-points for the Actical accelerometer. Thirty-eight volunteers completed a multi-stage treadmill protocol at 3, 5, and 8 km · h?1 (2, 3.3, and 8 METs) while wearing Actical accelerometers initialized to collect data in 60-s epochs. Using a decision boundary analytical approach, moderate and vigorous physical activity intensity cut-points were derived for the Actical accelerometer. In adults (n = 26), the cut-point for moderate physical activity intensity occurred at 1535 counts per minute and the vigorous cut-point occurred at 3960 counts per minute. In children (n = 12), the cut-point for moderate physical activity intensity occurred at 1600 counts per minute and the vigorous cut-point occurred at 4760 counts per minute. Improved classification of physical activity intensity using the decision boundary cut-points was observed compared with using mean values for each protocol stage. The cut-points derived are recommended for use in adults. The cut-points derived for children confirm the findings of previous studies.  相似文献   

2.
The aim of this study was to determine whether gait cycle characteristics are associated with running economy in elite Kenyan runners. Fifteen elite Kenyan male runners completed two constant-speed running sets on a treadmill (12 km ·h?1 and 20 km ·h?1). VO2 and respiratory exchange ratio values were measured to calculate steady-state oxygen and energy cost of running. Gait cycle characteristics and ground contact forces were measured at each speed. Oxygen cost of running at different velocities was 192.2 ± 14.7 ml· kg?1· km?1 at 12 km· h?1 and 184.8 ± 9.9 ml· kg?1· km?1 at 20 km· h?1, which corresponded to a caloric cost of running of 0.94 ± 0.07 kcal ·kg?1·km?1 and 0.93 ± 0.07 kcal· kg?1· km?1. We found no significant correlations between oxygen and energy cost of running and biomechanical variables and ground reaction forces at either 12 or 20 km· h?1. However, ground contact times were ~10.0% shorter (very large effect) than in previously published literature in elite runners at similar speeds, alongside an 8.9% lower oxygen cost (very large effect). These results provide evidence to hypothesise that the short ground contact times may contribute to the exceptional running economy of Kenyan runners.  相似文献   

3.
Abstract

The assessment of nutrition and activity in athletes requires accurate and precise methods. The aim of this study was to validate a protocol for parallel assessment of diet and exercise against doubly labelled water, 24-h urea excretion, and respiratory gas exchange. The participants were 14 male triathletes under normal training conditions. Energy intake and doubly labelled water were weakly associated with each other (r = 0.69, standard error of estimate [SEE] = 304 kcal · day?1). Protein intake was strongly correlated with 24-h urea (r = 0.89) but showed considerable individual variation (SEE = 0.34 g · kg?1 · day?1). Total energy expenditure based on recorded activities was highly correlated with doubly labelled water (r = 0.95, SEE = 195 kcal · day?1) but was proportionally biased. During running and cycling, estimated exercise energy expenditure was highly correlated with gas exchange (running: r = 0.89, SEE = 1.6 kcal · min?1; cycling: r = 0.95, SEE = 1.4 kcal · min?1). High exercise energy expenditure was slightly underestimated during running. For nutrition data, variations appear too large for precise measurements in individual athletes, which is a common problem of dietary assessment methods. Despite the high correlations of total energy expenditure and exercise energy expenditure with reference methods, a correction for systematic errors is necessary for the valid estimation of energetic requirements in individual athletes.  相似文献   

4.
Dietary intake, vitamin status and oxidative stress were evaluated in 17 elite male boxers. Ten of them frequently reduced body weight rapidly before competitions (Weight Loss Group) and 7 did not practice rapid weight loss (Control Group). Food record checklists, blood samples for determination of vitamin status and plasma glutathione levels were obtained during a week of weight maintenance, a pre-competition week and a post-competition week. The average dietary intakes in both groups were 33 ± 8 kcal·kg?1, 3.7 ± 1.1 g·kg?1 carbohydrates, 1.5 ± 0.4 g·kg?1 protein, 1.2 ± 0.4 g·kg?1 fat and 2.2 ± 1.0 L water per day (excluding pre-competition week in Weight Loss Group). Energy (18 ± 7 kcal·kg?1), carbohydrate (2.2 ± 0.8 g·kg?1), protein (0.8 ± 0.4 g·kg?1), fat (0.6 ± 0.3 g·kg?1) and water (1.6 ± 0.6 L) consumption (P-values <0.001) and intakes of most vitamins (P-values < 0.05) were significantly reduced during the pre-competition week in the Weight Loss Group. In both groups, the intakes of vitamins A, E and folate were below recommended values throughout the three periods; however, blood vitamin and plasma glutathione levels did not change significantly. Our findings indicate a low-caloric and low-carbohydrate diet in elite boxers, regardless of participating in rapid weight loss or not. Apparently, the pre-competitional malnutitrition in the Weight Loss Group did not induce alterations in the vitamin and glutathione status.  相似文献   

5.
Abstract

Low energy availability [(energy intake – exercise expenditure)/kg lean body mass], a component of the Female Athlete Triad, has been associated with menstrual disturbances and low bone mass. No studies have examined the energy availability of athletes across a season. The purpose of this study was to assess the prevalence of, and what contributes to, low energy availability in Division I female soccer players across a season. Nineteen participants aged 18–21 years (mean [Vdot]O2max: 57.0 ± 1.0 mL · kg?1 · min?1) were studied during the pre, mid, and post season. Mean energy availability was overall lowest at mid season, and lower at mid than post season (35.2 ± 3.7 vs. 44.5 ± 3.7 kcal · kg?1 lean body mass, P = 0.009). Low energy availability (<30 kcal · kg?1 lean body mass) was observed in 5/19 (26.3%), 5/15 (33.3%), and 2/17 (11.8%) of participants during the pre, mid, and post season. Dietary energy intake was lower mid (P = 0.008) and post season (P = 0.022) than it was pre season (pre: 2794 ± 233 kcal · day?1; mid: 2208 ± 156 kcal · day?1; post: 2161 ± 143 kcal · day?1). Exercise energy expenditure decreased significantly (P ≤ 0.001) over time (pre: 819 ± 57 kcal · day?1; mid: 642 ± 26 kcal · day?1; post: 159 ± 28 kcal · day?1). Low energy availability was due to lower dietary energy intake at lunch during pre season (P = 0.014) and during lunch and dinner during mid season (P ≤ 0.030). Energy availability was inversely related to body dissatisfaction (r = ?0.62, P = 0.017) and drive for thinness (r = ?0.55, P = 0.041) during mid season. Although most Division I female soccer players are not at risk for low energy availability, a concerning proportion exhibited low energy availability at pre or mid season. Further studies are needed to explore strategies to prevent and monitor low energy availability in these athletes.  相似文献   

6.
Abstract

This study compared the physiological responses (oxygen consumption and energy expenditure) of Nordic Walking to regular walking under field-testing conditions. Eleven women (M age = 27.1 years, SD = 6.4) and 11 men (M age = 33.8 years, SD = 9.0) walked 1,600 m with and without walking poles on a level, 200-m track. For women, Nordic Walking resulted in increased oxygen consumption (M = 14.9 ml·kg1·min?1 , SD = 3.2 vs. M = 17.9 ml·kg1·min?1 , SD = 3.5; p < .001), caloric expenditure (M = 4.6 kcal·min?1 , SD = 1.2 vs. M = 5.4 kcal·min?1 , SD = 1.2; p < .001), and heart rate (M = 113.7 bpm, SD = 12.0 vs. M = 118.7 bpm, SD = 14.8; p < .05) compared to regular walking. For men, Nordic Walking resulted in increased oxygen consumption (M = 12.8 ml·kg1·min?1 , SD = 1.8 vs. M = 15.5, SD = 3.4 ml·kg1·min?1; p < .01), caloric expenditure (M = 5.7 kcal·min?1 , SD = 1.3 vs. M = 6.9 kcal·min?1 , SD = 1.8; p < .001), and heart rate (M = 101.6 bpm, SD = 12.0 bpm vs. M = 109.8 bpm, SD = 14.7; p < .01) compared to regular walking. Nordic Walking, examined in the field, results in a significant increase in oxygen use and caloric expenditure compared to regular walking, without significantly increasing perceived exertion.  相似文献   

7.
The purpose of this study was to ascertain the typical metabolic power characteristics of elite men’s hockey, and whether changes occur within matches and throughout an international tournament. National team players (n = 16), divided into 3 positional groups (strikers, midfielders, defenders), wore Global Positioning System devices in 6 matches. Energetic (metabolic power, energy expenditure) and displacement (distance, speed, acceleration) variables were determined, and intensity was classified utilising speed, acceleration and metabolic power thresholds. Midfielder’s average metabolic power (11.8 ± 1.0 W · kg?1) was similar to strikers (11.1 ± 1.3 W · kg?1) and higher than defenders (10.8 ± 1.2 W · kg?1, P = 0.001). Strikers (29.71 ± 3.39 kJ · kg?1) expended less energy than midfielders (32.18 ± 2.67 kJ · kg?1, P = 0.014) and defenders (33.23 ± 3.96 kJ · kg?1, P < 0.001). Energetic variables did not change between halves or across matches. Across all positions, over 45% of energy expenditure was at high intensity (>20 W · kg?1). International hockey matches are intense and highly intermittent; however, intensity is maintained throughout matches and over a tournament. In isolation, displacement measures underestimate the amount of high-intensity activity, whereas the integration of instantaneous speed and acceleration provides a more comprehensive assessment of the demands for variable-speed activity typically occurring in hockey matches.  相似文献   

8.
ABSTRACT

Accelerometer cut points are an important consideration for distinguishing the intensity of activity into categories such as moderate and vigorous. It is well-established in the literature that these cut points depend on a variety of factors, including age group, device, and wear location. The Actigraph GT9X is a newer model accelerometer that is used for physical activity research, but existing cut points for this device are limited since it is a newer device. Furthermore, there is not existing data on cut points for the GT9X at the ankle or foot locations, which offers some potential benefit for activities that do not involve arm and/or core motion. A total of N = 44 adults completed a four-stage treadmill protocol while wearing Actigraph GT9X sensors at four different locations: foot, ankle, wrist, and hip. Metabolic Equivalent of Task (MET) levels assessed by indirect calorimetry along with Receiver Operating Characteristic (ROC) curves were used to establish cut points for moderate and vigorous intensity for each wear location of the GT9X. Area under the ROC curves indicated high discrimination accuracy for each case.  相似文献   

9.
The purpose of this study was to provide a more detailed analysis of performance in cross-country skiing by combining findings from a differential global positioning system (dGPS), metabolic gas measurements, speed in different sections of a ski-course and treadmill threshold data. Ten male skiers participated in a freestyle skiing field test (5.6?km), which was performed with dGPS and metabolic gas measurements. A treadmill running threshold test was also performed and the following parameters were derived: anaerobic threshold, threshold of decompensated metabolic acidosis, respiratory exchange ratio = 1, onset of blood lactate accumulation and peak oxygen uptake ([Vdot]O2peak). The combined dGPS and metabolic gas measurements made detailed analysis of performance possible. The strongest correlations between the treadmill data and final skiing field test time were for [Vdot]O2peak (l?·?min?1), respiratory exchange ratio = 1 (l?·?min?1) and onset of blood lactate accumulation (l?·?min?1) (r = ?0.644 to ??0.750). However, all treadmill test data displayed stronger associations with speed in different stretches of the course than with final time, which stresses the value of a detailed analysis of performance in cross-country skiing. Mean oxygen uptake ([Vdot]O2) in a particular stretch in relation to speed in the same stretch displayed its strongest correlation coefficients in most stretches when [Vdot]O2 was presented in units litres per minute, rather than when [Vdot]O2 was normalized to body mass (ml?·?kg?1?·?min?1 and ml?·?min?1?·?kg?2/3). This suggests that heavy cross-country skiers have an advantage over their lighter counterparts. In one steep uphill stretch, however, [Vdot]O2 (ml?·?min?1?·?kg?2/3) displayed the strongest association with speed, suggesting that in steep uphill sections light skiers could have an advantage over heavier skiers.  相似文献   

10.
This study examined whether or not activity monitor data collected as part of a typical 7-day physical activity (PA) measurement protocol can be expected to be missing at random. A total of 315 participants (9–18 years) each wore a SenseWear Armband monitor for 7 consecutive days. Participants were classified as “compliant” (86 boys and 124 girls) if they had recorded accelerometer data during 70% or more of the predefined awake time (7 AM–10 PM) on four different days; and “non-compliant” (44 boys and 51 girls) when not meeting these criteria. Linear mixed models were used to examine differences in energy expenditure (EE) levels by compliance across 10 different time periods. The results indicated that non-compliant girls were older (13.4 ± 2.9 vs. 12.2 ± 2.5) and taller (156.8 ± 10.3 vs. 152.8 ± 11.3) than their same gender compliant peers (P < .05). Comparisons of EE rates at segmented portions of the day revealed no differences between compliant and non-compliant groups (P ≥ .05). Differences in EE ranged from ?0.32 kcal · kg?1 · h?1 (before school time) to 0.62 kcal · kg?1 · h?1 (physical education class) in boys and ?0.39 kcal · kg?1 · h?1 (transportation from school) to 0.37 kcal · kg?1 · hour?1 (recess) in girls. The results showed that compliant and non-compliant individuals differed in a few demographic characteristics but exhibited similar activity patterns. This suggests that data were considered to be missing at random, but additional work is needed to confirm this observation in a representative sample of children using other types of activity monitors and protocols.  相似文献   

11.
The purpose of the study is to analyse how the standard of resting metabolic rate (RMR) affects estimation of the metabolic equivalent of task (MET) using an accelerometer. In order to investigate the effect on estimation according to intensity of activity, comparisons were conducted between the 3.5 ml O2 · kg?1 · min?1 and individually measured resting VO2 as the standard of 1 MET. MET was estimated by linear regression equations that were derived through five-fold cross-validation using 2 types of MET values and accelerations; the accuracy of estimation was analysed through cross-validation, Bland and Altman plot, and one-way ANOVA test. There were no significant differences in the RMS error after cross-validation. However, the individual RMR-based estimations had as many as 0.5 METs of mean difference in modified Bland and Altman plots than RMR of 3.5 ml O2 · kg?1 · min?1. Finally, the results of an ANOVA test indicated that the individual RMR-based estimations had less significant differences between the reference and estimated values at each intensity of activity. In conclusion, the RMR standard is a factor that affects accurate estimation of METs by acceleration; therefore, RMR requires individual specification when it is used for estimation of METs using an accelerometer.  相似文献   

12.
The aim of the present study was to evaluate the effects of a 12-week home-based strength, explosive and plyometric (SEP) training on the cost of running (Cr) in well-trained ultra-marathoners and to assess the main mechanical parameters affecting changes in Cr. Twenty-five male runners (38.2?±?7.1 years; body mass index: 23.0?±?1.1?kg·m?2; V˙O2max: 55.4?±?4.0 mlO2·kg?1·min?1) were divided into an exercise (EG?=?13) and control group (CG?=?12). Before and after a 12-week SEP training, Cr, spring-mass model parameters at four speeds (8, 10, 12, 14?km·h?1) were calculated and maximal muscle power (MMP) of the lower limbs was measured. In EG, Cr decreased significantly (p?<?.05) at all tested running speeds (?6.4?±?6.5% at 8?km·h?1; ?3.5?±?5.3% at 10?km·h?1; ?4.0?±?5.5% at 12?km·h?1; ?3.2?±?4.5% at 14?km·h?1), contact time (tc) increased at 8, 10 and 12?km·h?1 by mean +4.4?±?0.1% and ta decreased by ?25.6?±?0.1% at 8?km·h?1 (p?<?.05). Further, inverse relationships between changes in Cr and MMP at 10 (p?=?.013; r?=??0.67) and 12?km·h?1 (p?<?.001; r?=??0.86) were shown. Conversely, no differences were detected in the CG in any of the studied parameters. Thus, 12-week SEP training programme lower the Cr in well-trained ultra-marathoners at submaximal speeds. Increased tc and an inverse relationship between changes in Cr and changes in MMP could be in part explain the decreased Cr. Thus, adding at least three sessions per week of SEP exercises in the normal endurance-training programme may decrease the Cr.  相似文献   

13.
Abstract

The agreement between self-reported and objective estimates of activity energy expenditure was evaluated in adolescents by age, sex, and weight status. Altogether, 403 participants (217 females, 186 males) aged 13–16 years completed a 3-day physical activity diary and wore a GT1M accelerometer on the same days. Partial correlations (controlling for body mass) were used to determine associations between estimated activity energy expenditure (kcal · min?1) from the diary and accelerometry. Differences in the magnitude of the correlations were examined using Fisher's r to z transformations. Bland–Altman procedures were used to determine concordance between the self-reported and objective estimates. Partial correlations between assessments of activity energy expenditure (kcal · min?1) did not differ significantly by age (13–14 years: r = 0.41; 15–16 years: r = 0.42) or weight status (normal weight: r = 0.42; overweight: r = 0.39). The magnitude of the association was significantly affected by sex (Δr = 0.11; P < 0.05). The agreement was significantly higher in males than in females. The relationship between activity energy expenditure assessed by the objective method and the 3-day diary was moderate (controlling for weight, correlations ranged between 0.33 and 0.44). However, the 3-day diary revealed less agreement in specific group analyses; it markedly underestimated activity energy expenditure in overweight/obese and older adolescents. The assessment of activity energy expenditure is complex and may require a combination of methods.  相似文献   

14.
Abstract

Ingesting carbohydrate plus protein following prolonged exercise may restore exercise capacity more effectively than ingestion of carbohydrate alone. The objective of the present study was to determine whether this potential benefit is a consequence of the protein fraction per se or simply due to the additional energy it provides. Six active males participated in three trials, each involving a 90-min treadmill run at 70% maximal oxygen uptake (run 1) followed by a 4-h recovery. At 30-min intervals during recovery, participants ingested solutions containing: (1) 0.8 g carbohydrate · kg body mass (BM)?1 · h?1 plus 0.3 g · kg?1 · h?1 of whey protein isolate (CHO-PRO); (2) 0.8 g carbohydrate · kg BM?1 · h?1 (CHO); or (3) 1.1 g carbohydrate · kg BM?1 · h?1 (CHO-CHO). The latter two solutions matched the CHO-PRO solution for carbohydrate and for energy, respectively. Following recovery, participants ran to exhaustion at 70% maximal oxygen uptake (run 2). Exercise capacity during run 2 was greater following ingestion of CHO-PRO and CHO-CHO than following ingestion of CHO (P ≤ 0.05) with no significant difference between the CHO-PRO and CHO-CHO treatments. In conclusion, increasing the energy content of these recovery solutions extended run time to exhaustion, irrespective of whether the additional energy originated from sucrose or whey protein isolate.  相似文献   

15.
Purpose: Correlations between fatigue-induced changes in exercise performance and maximal rate of heart rate (HR) increase (rHRI) may be affected by exercise intensity during assessment. This study evaluated the sensitivity of rHRI for tracking performance when assessed at varying exercise intensities. Method: Performance (time to complete a 5-km treadmill time-trial [5TTT]) and rHRI were assessed in 15 male runners following 1 week of light training, 2 weeks of heavy training (HT), and a 10-day taper (T). Maximal rate of HR increase (measured in bpm·s?1) was the first derivative maximum of a sigmoidal curve fit to HR data recorded during 5 min of running at 8 km·h?1 (rHRI8km·h?1), and during subsequent transition to 13 km·h?1 (rHRI8–13km·h?1) for a further 5 min. Results: Time to complete a 5-km treadmill time-trial was likely slower following HT (effect size ± 90% confidence interval = 0.16 ± 0.06), and almost certainly faster following T (–0.34 ± 0.08). Maximal rate of HR increase during 5 min of running at 8 km·h?1 and rHRI8–13km·h?1 were unchanged following HT and likely increased following T (0.77 ± 0.45 and 0.66 ± 0.62, respectively). A moderate within-individual correlation was found between 5TTT and rHRI8km·h?1 (r value ± 90% confidence interval = –.35 ± .32). However, in a subgroup of athletes (= 7) who were almost certainly slower to complete the 5TTT (4.22 ± 0.88), larger correlations were found between the 5TTT and rHRI8km·h?1 (r = –.84 ± .22) and rHRI8–13km·h?1 (r = –.52 ± .41). Steady-state HR during rHRI assessment in this group was very likely greater than in the faster subgroup (≥ 1.34 ± 0.86). Conclusion(s): The 5TTT performance was tracked by both rHRI8km·h?1 and rHRI8–13km·h?1. Correlations between rHRI and performance were stronger in a subgroup of athletes who exhibited a slower 5TTT. Individualized workloads during rHRI assessment may be required to account for varying levels of physical conditioning.  相似文献   

16.
Abstract

Several nutritional strategies can optimize muscle bulk and strength adaptations and enhance recovery from heavy training sessions. Adequate energy intake to meet the needs of training and carbohydrate intake sufficient to maintain glycogen stores (>7 g carbohydrate·kg?1·day?1 for women; >8 g carbohydrate·kg?1·day?1 for men) are important. Dietary protein intake for top sport athletes should include some foods with high biological value, with a maximum requirement of approximately 1.7 g·kg?1·day?1 being easily met with an energy sufficient diet. The early provision of carbohydrate (>1 g·kg?1) and protein (>10 g) early after an exercise session will enhance protein balance and optimize glycogen repletion. Creatine monohydrate supplementation over several days increases body mass through water retention and can increase high-intensity repetitive ergometer performance. Creatine supplementation can enhance total body and lean fat free mass gains during resistance exercise training; however, strength gains do not appear to be enhanced versus an optimal nutritional strategy (immediate post-exercise protein and carbohydrate). Some studies have suggested that β-OH-methyl butyric acid (β-HMB) can enhance gains made through resistance exercise training; however, it has not been compared “head to head” with optimal nutritional practices. Overall, the most effective way to increase strength and bulk is to perform sport-specific resistance exercise training with the provision of adequate energy, carbohydrate, and protein. Creatine monohydrate and β-HMB supplementation may enhance the strength gains made through training by a small margin but the trade-off is likely to be greater bulk, which may be ergolytic for any athlete participating in a weight-supported activity.  相似文献   

17.
This study examined the validity of current Actical activity energy expenditure (AEE) equations and intensity cut-points in preschoolers using AEE and direct observation as criterion measures. Forty 4–6-year-olds (5.3 ± 1.0 years) completed a ~150-min room calorimeter protocol involving age-appropriate sedentary behaviours (SBs), light intensity physical activities (LPAs) and moderate-to-vigorous intensity physical activities (MVPAs). AEE and/or physical activity intensity were calculated using Actical equations and cut-points by Adolph, Evenson, Pfeiffer and Puyau. Predictive validity was examined using paired sample t-tests. Classification accuracy was evaluated using weighted kappas, sensitivity, specificity and area under the receiver operating characteristic curve. The Pfeiffer equation significantly overestimated AEE during SB and underestimated AEE during LPA (P < 0.0125 for both). There was no significant difference between measured and predicted AEEs during MVPA. The Adolph cut-point showed significantly higher accuracy for classifying SB, LPA and MVPA than all others. The available Actical equation does not provide accurate estimates of AEE across all intensities in preschoolers. However, the Pfeiffer equation performed reasonably well for MVPA. Using cut-points of ≤6 counts · 15 s?1, 7–286 counts · 15 s?1 and ≥ 287 counts · 15 s?1 when classifying SB, LPA and MVPA, respectively, is recommended.  相似文献   

18.
Accelerometry is increasingly used as a physical activity surveillance device that can quantify the amount of time spent moving at a range of intensities. This study proposes physical activity intensity cut-points for the Actical accelerometer. Thirty-eight volunteers completed a multi-stage treadmill protocol at 3, 5, and 8 km · h?1 (2, 3.3, and 8 METs) while wearing Actical accelerometers initialized to collect data in 60-s epochs. Using a decision boundary analytical approach, moderate and vigorous physical activity intensity cut-points were derived for the Actical accelerometer. In adults (n = 26), the cut-point for moderate physical activity intensity occurred at 1535 counts per minute and the vigorous cut-point occurred at 3960 counts per minute. In children (n = 12), the cut-point for moderate physical activity intensity occurred at 1600 counts per minute and the vigorous cut-point occurred at 4760 counts per minute. Improved classification of physical activity intensity using the decision boundary cut-points was observed compared with using mean values for each protocol stage. The cut-points derived are recommended for use in adults. The cut-points derived for children confirm the findings of previous studies.  相似文献   

19.
20.
Abstract

Although questionnaires are useful for evaluating patterns of physical activity in populations, they need to be validated. The objective of this study was to determine the validity and reliability of the long version of the International Physical Activity Questionnaire (IPAQ) in a Spanish population. The participants wore a uniaxial MTI Actigraph (Computer Science and Application, Inc.) accelerometer for 7 days and self-completed the IPAQ questionnaire twice, to assess its reliability. Criterion validity was assessed by comparing data from the IPAQ and data from the MTI. The final sample included 54 adults for the validity analysis and 66 adults for the reliability analysis. The correlations (r) between the IPAQ and the accelerometer were 0.29 (P<0.05) for total physical activity (MET · min?1 · day?1) versus total counts per minute, 0.30 (P<0.05) for time spent in vigorous activity, and 0.34 (P<0.05) for time spent sitting. The IPAQ showed a good reliability coefficient for total physical activity (r=0.82, P<0.05), vigorous activity (r=0.79, P<0.05), moderate activity (r=0.83, P<0.05), and time spent walking (r=0.73, P<0.05). Total time spent on work-related physical activities (r=0.92, P<0.05), on household-related activities (r=0.86, P<0.05), and leisure-time physical activities (excluding walking) (r=0.82, P<0.05) showed good reliability coefficients. Bland Altman analysis showed that discrepancies between the two methods increased with the amount of moderate and vigorous physical activity undertaken. In conclusion, the long version of the IPAQ has acceptable validity for the measurement of total and vigorous physical activity, and good reliability coefficients for application in the Spanish population studied here. The questionnaire showed poor validity for reporting moderate-intensity activity in this Spanish population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号