首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
There have been substantial reform efforts in science education to improve students’ understandings of science and its processes and provide continual support for students becoming scientifically literate (AAAS, Benchmarks for science literacy, Oxford University Press, New York, 1993; NRC, National Academy Press, Washington, DC, 1996; NSTA, NSTA position statement: The nature of science, , 2000). Despite previous research, it is still unclear whether young children are actually developmentally ready to conceptualize the ideas that are recommended in the reforms (Akerson and Volrich, J Res Sci Teach 43:377–394, 2006). The purpose of this study was to explore how explicit-reflective instruction could improve young students’ understanding of NOS. During an informal education setting, the authors taught NOS aspects using explicit-reflective instruction. Overall the students participating in the program improved their understanding of the target aspects of NOS through use of explicit reflective instruction. However, the levels of improvement varied across different aspects. Students improved the most in their understanding of the tentative nature of science and the roles of observation in scientific work, although there was still some confusion regarding the distinction between observation and inference. More work needs to be done exploring these specific topics and the role explicit reflective practice can play in identifying the particular problems students have in distinguishing these constructs.  相似文献   

2.
This study assessed the influence of guided inquiry and explicit reflective instruction on K-6 teachers’ views of nature of science (NOS). Using the Views of Nature of Science Elementary School Version 2 (VNOS-D2), and associated interviews we tracked the changes in NOS views of teacher participants prior to and following a summer professional development program. The teachers participated in guided inquiry to improve physics knowledge, and explicit-reflective NOS activities to improve their views of NOS. Videotaped records of the workshop ensured that explicit reflective NOS instruction took place in conjunction with physics inquiry instruction. Analysis indicated that teachers improved their NOS views by the conclusion of the institute Implications for providing professional development combining inquiry and NOS instruction are made.  相似文献   

3.
This paper articulates the importance of epistemological beliefs (EBs) and draws a parallel between EBs literature in educational psychology and nature of science (NOS) literature in science education. The paper stresses that EBs in science and NOS ideas have common ground and they can be best improved through explicit-reflective instruction informed by conceptual change theory. The paper concludes that future studies should explore the factors that mediate the development of EBs in science and NOS ideas rather than documenting the changes in students’ and teachers’ EBs in science and NOS ideas after explicit-reflective instruction through pre- and post assessments.  相似文献   

4.
Much has been written about how effective nature of science instruction must have a significant explicit and reflective character. However, while explicitly drawing students’ attention to NOS issues is crucial, learning and teaching the NOS are essentially matters of conceptual change. In this article, how people learn and learners’ responses to the demands of conceptual change are used to explain how students may exit from instruction with fundamental NOS misconceptions left intact or only slightly altered, despite being explicitly and reflectively attended to more accurate ideas. The purpose of this concept paper is to set within a theoretical framework of learning, and bring some coherence to, what has rapidly become a large body of empirical research regarding effective NOS instruction. Toward these two ends, this article: (1) illustrates how a conceptual change framework can be used to account for learners’ responses to NOS instruction and what teachers might do to promote understanding NOS and transferring it to new contexts; (2) characterizes popularly advocated NOS instructional approaches along a continuum marked by increasing connection to the workings of science, and decreased ability to dismiss NOS lessons as extraneous to authentic science; and (3) proposes that NOS instruction would likely be more effective if teachers deliberately scaffolded classroom experiences and students’ developing NOS understanding back and forth along the continuum.  相似文献   

5.
In this article, we describe an innovative capstone course for preservice K-8 teachers integrating action research and a unifying theme in science (AAAS in Science for all Americans. Oxford University Press, New York, 1989; NRC in National science education standards. National Academy Press, Washington, DC, 1996). The goals of the capstone course are to increase student knowledge of the unifying theme, improve written communication skills, and introduce students to educational research. We provide evidence that each of these goals is met. Student growth in theme knowledge is demonstrated through concept maps, questionnaires, and previously reported assessments. Improved writing ability is demonstrated using the spelling and grammar checking feature of Microsoft Word. The analysis of action research reports demonstrates that students are able to connect their action research project results to previous research.  相似文献   

6.
This study explored third-grade elementary students' conceptions of nature of science (NOS) over the course of an entire school year as they participated in explicit-reflective science instruction. The Views of NOS-D (VNOS-D) was administered pre instruction, during mid-school year, and at the end of the school year to track growth in understanding over time. The Young Children's Views of Science was used to describe how students conversed about NOS among themselves. All science lessons were videotaped, student work collected, and a researcher log was maintained. Data were analyzed by a team of researchers who sorted the students into low-, medium-, and high-achieving levels of NOS understandings based on VNOS-D scores and classwork. Three representative students were selected as case studies to provide an in-depth picture of how instruction worked differentially and how understandings changed for the three levels of students. Three different learning trajectories were developed from the data describing the differences among understandings for the low-, medium-, and high-achieving students. The low-achieving student could discuss NOS ideas, the medium-achieving student discussed and wrote about NOS ideas, the high-achieving student discussed, wrote, and raised questions about NOS ideas.  相似文献   

7.
This longitudinal study of middle school science teachers explored the relationship between effective science instruction, as defined by the National Science Education Standards (NRC in National science education standards. National Academy Press, Washington, DC, 1996), and student achievement in science. Eleven teachers participated in a three year study of teacher effectiveness, determined by the LSC Classroom Observation Protocol (Horizon Research, Inc. in Local Systemic Change Classroom Observation Protocol. May 1, 2002) and student achievement, which was assessed using the Discovery Inquiry Test in Science. Findings in this study revealed the positive impact that effective science teachers have on student learning, eliminating achievement gaps between White and Non-White students. Case studies of three teachers, both effective and ineffective explore the beliefs and experiences that influence teachers to change, or not to change practice. This study provides justification for teaching science effectively to narrow achievement gaps in science and provides insight to stakeholders in science education as to how to support teachers in becoming more effective, through addressing existing teacher beliefs and providing experiences that challenge those beliefs.  相似文献   

8.
This study investigated the effects of a multi-pronged approach of increasing the nature of science (NOS) understandings of high school science students. The participants consist of 63 high school students: 31 in the intervention group and 32 in the control group. Explicit/reflective NOS instruction was imbedded within authentic inquiry experiences and supported by online discussions. The students in the intervention group were prompted to engage in various discussions focusing on essential tenets of NOS in an online environment that assured student confidentiality. NOS views were assessed through multiple data sources including pre- and post-intervention questionnaires as well as students’ responses to online discussion prompts. Results show that the instructional intervention used in this study which combined explicit/reflective NOS instruction with intense inquiry exposure along with ample reflective opportunities in an anonymous online discussion format led to positive learning gains in participants’ understanding the NOS aspects assessed. Implications for enhancing data collection with high school students and for promising professional development opportunities for science educators are discussed.  相似文献   

9.
A study of the effect of science teaching with a multimedia simulation on water quality, the “River of Life,” on the science conceptual understanding of students (N = 83) in an undergraduate science education (K-9) course is reported. Teaching reality-based meaningful science is strongly recommended by the National Science Education Standards (National Research Council, 1996). Water quality provides an information-rich context for relating classroom science to real-world situations impacting the environment, and will help to improve student understanding of science (Kumar, 2005a; Kumar and Chubin, 2000). The topics addressed were classes of organisms that form river ecosystem, dissolved oxygen, macroinvertebrates, composition of air, and graph reading skills. Paired t-test of pre- and post-tests, and pre- and delayed post-tests showed significant (p < 0.05) gains. The simulation had a significant effect on the conceptual understanding of students enrolled in a K-9 science education course for prospective teachers in the following areas: composition of air, macroinvertebrates, dissolved oxygen, classes of organisms that form a river ecosystem, and graph reading skills. The gain was more in the former four areas than the latter one. A paired t-test of pre- and delayed post-tests showed significant (p < 0.05) gains in the water quality and near transfer subsets than the dissolved oxygen subset. Additionally students were able to transfer knowledge acquired from the multimedia simulation on more than one concept into teachable stand-alone lesson plans.  相似文献   

10.
Science teachers need an adequate understanding of nature of science (NOS) and the ability to embed NOS in their teaching. This collective case study aims to explore in-service science teachers’ conceptions of NOS and the embeddedness of NOS in their teaching about astronomy and space. Three science teachers participated in this study. All participants attended the NOS workshop based on an explicit-reflective approach. They were asked to respond to the Myths of Science Questionnaire on three different occasions, i.e., at the beginning and the end of the NOS workshop and a semester after the workshop. Classroom observation, interviews after teaching, and a collection of related documents were also employed to collect data. The data were analyzed using a constant comparative method. The results revealed two important assertions. First, science teachers’ conceptions of NOS are stable and resistant to change. However, an explicit-reflective approach employed in the NOS workshop, to some extent, promoted science teachers’ understanding and reasoning about NOS. Second, science teachers’ conceptions of NOS are not directly related to their classroom practices. With different degrees of NOS understanding, all participants taught NOS implicitly and missed most of the opportunities to address aspects of NOS embedded in the topics they taught. The implications of these findings are also discussed.  相似文献   

11.
Interviews with key scientists who had conducted research on Severe Acute Respiratory Syndrome (SARS), together with analysis of media reports, documentaries and other literature published during and after the SARS epidemic, revealed many interesting aspects of the nature of science (NOS) and scientific inquiry in contemporary scientific research in the rapidly growing field of molecular biology. The story of SARS illustrates vividly some NOS features advocated in the school science curriculum, including the tentative nature of scientific knowledge, theory-laden observation and interpretation, multiplicity of approaches adopted in scientific inquiry, the inter-relationship between science and technology, and the nexus of science, politics, social and cultural practices. The story also provided some insights into a number of NOS features less emphasised in the school curriculum—for example, the need to combine and coordinate expertise in a number of scientific fields, the intense competition between research groups (suspended during the SARS crisis), the significance of affective issues relating to intellectual honesty and the courage to challenge authority, the pressure of funding issues on the conduct of research and the ‘peace of mind’ of researchers, These less emphasised elements provided empirical evidence that NOS knowledge, like scientific knowledge itself, changes over time. They reflected the need for teachers and curriculum planners to revisit and reconsider whether the features of NOS currently included in the school science curriculum are fully reflective of the practice of science in the 21st century. In this paper, we also report on how we made use of extracts from the news reports and documentaries on SARS, together with episodes from the scientists’ interviews, to develop a multimedia instructional package for explicitly teaching the prominent features of NOS and scientific inquiry identified in the SARS research.
Siu Ling WongEmail:

Siu Ling Wong    is an Assistant Professor, in the Division of Science, Mathematics and Computing in the Faculty of Education at The University of Hong Kong. She received her B.Sc. from The University of Hong Kong and her Ph.D. from the University of Oxford. Her research interests include promoting teachers’ and students’ understanding of nature of science and scientific inquiry, physics education, teacher professional development. Jenny Kwan   is a PhD student in the Faculty of Education, at The University of Hong Kong. She received her B.Sc. from University of Sydney. She is now investigating in-service teachers’ classroom instruction on nature of science in relation to their intentions, beliefs, and pedagogical content knowledge. Derek Hodson   is Professor of Science Education at the Ontario Institute for Studies in Education and Editor of the Canadian Journal of Science, Technology and Mathematics Education. His major research interests include: history, philosophy & sociology of science and its implications for science education; STSE education and the politicisation of science education; science curriculum history; multicultural and antiracist education; and science teacher education via action research. Benny Hin Wai Yung    is Head, Associate Professor, in the Division of Science, Mathematics and Computing in the Faculty of Education at University of Hong Kong. His main research areas are teacher education and development, science education and assessment for science learning. His recent publications include Yung BHW (2006) Assessment reform in science education: fairness and fear. Springer, Dordrecht.  相似文献   

12.
Establishing literacy in science is often linked to building knowledge about the Nature of Science (NOS). This paper describes and evaluates an inservice program designed to build elementary teachers’ understanding of NOS and an awareness of how NOS impacts science classroom instruction. Data sources consisted of surveys, action research plan documentation and classroom observations. Program participants tended to demonstrate some gains in understanding more about NOS and they linked positive experiences in the program to the explicit and activity-based NOS instruction provided. Yet, participation in the professional development project might not have been equally beneficial for all teachers. The understanding of NOS may have been restricted to certain NOS aspects, and the demonstration of the participants’ understanding of NOS may have been short-lived with a somewhat limited impact on sustainable, long-term NOS-based classroom instruction. Implications for designing NOS related professional development programs and suggestions for improvements to further develop teacher understanding of NOS are discussed.  相似文献   

13.
ABSTRACT

Graduate students regularly teach undergraduate STEM courses and can positively impact students’ understanding of science. Yet little research examines graduate students’ knowledge about nature of science (NOS) or instructional strategies for teaching graduate students about NOS. This exploratory study sought to understand how a 1-credit Teaching in Higher Education course that utilised an explicit, reflective, and mixed-context approach to NOS instruction impacted STEM graduate students’ NOS conceptions and teaching intentions. Participants included 13 graduate students. Data sources included the Views of Nature of Science (VNOS-Form C) questionnaire administered pre- and post-instruction, semi-structured interviews with a subset of participants, and a NOS-related course project. Prior to instruction participants held many alternative NOS conceptions. Post-instruction, participants’ NOS conceptions improved substantially, particularly in their understandings of theories and laws and the tentative nature of scientific knowledge. All 12 participants planning to teach NOS intended to use explicit instructional approaches. A majority of participants also integrated novel ideas to their intended NOS instruction. These results suggest that a teaching methods course for graduate students with embedded NOS instruction can address alternative NOS conceptions and facilitate intended use of effective NOS instruction. Future research understanding graduate students' NOS understandings and actual NOS instruction is warranted.  相似文献   

14.
Research in Science Education - Explicit-reflective nature of science (NOS) instruction has demonstrated a positive impact on student learning. Although explicit-reflective NOS instruction often...  相似文献   

15.
The Nature of Science in Science Education: An Introduction   总被引:10,自引:4,他引:6  
  相似文献   

16.
The nature of science (NOS) has become a central goal of science education in many countries. This study refers to a developmental work research program, in which four fifth-grade elementary in-service teachers participated. It aimed to improve their understandings of NOS and their abilities to teach it effectively to their students. The 1-year-long, 2012–2013, program consisted of a series of activities to support teachers to develop their pedagogical content knowledge of NOS. In order to accomplish our goal, we enabled teacher-researchers to analyze their own discourse practices and to trace evidence of effective NOS teaching. Many studies indicate the importance of examining teachers’ discussions about science in the classroom, since it is teachers’ understanding of NOS reflected in these discussions that will have a vital impact on students’ learning. Our proposal is based on the assumption that reflecting on the ways people form meanings enables us to examine and seek alternative ways to communicate aspects of NOS during science lessons. The analysis of discourse data, which has been carried out with the teacher-researchers’ active participation, indicated that initially only a few aspects of NOS were implicitly incorporated in teacher-researchers’ instruction. As the program evolved, all teacher-researchers presented more informed views on targeted NOS aspects. On the whole, our discourse-focused professional development program with its participatory, explicit, and reflective character indicated the importance of involving teacher-researchers in analyzing their own talk. It is this involvement that results in obtaining a valuable awareness of aspects concerning pedagogical content knowledge of NOS teaching.  相似文献   

17.
The construct of identity has been used widely in mathematics education in order to understand how students (and teachers) relate to and engage with the subject (Kaasila, 2007; Sfard & Prusak, 2005; Boaler, 2002). Drawing on cultural historical activity theory (CHAT), this paper adopts Leont’ev’s notion of leading activity in order to explore the key ‘significant’ activities that are implicated in the development of students’ reflexive understanding of self and how this may offer differing relations with mathematics. According to Leont’ev (1981), leading activities are those which are significant to the development of the individual’s psyche through the emergence of new motives for engagement. We suggest that alongside new motives for engagement comes a new understanding of self—a leading identity—which reflects a hierarchy of our motives. Narrative analysis of interviews with two students (aged 16–17 years old) in post-compulsory education, Mary and Lee, are presented. Mary holds a stable ‘vocational’ leading identity throughout her narrative and, thus, her motive for studying mathematics is defined by its ‘use value’ in terms of pursuing this vocation. In contrast, Lee develops a leading identity which is focused on the activity of studying and becoming a university student. As such, his motive for study is framed in terms of the exchange value of the qualifications he hopes to obtain. We argue that this empirical grounding of leading activity and leading identity offers new insights into students’ identity development.  相似文献   

18.
A research-based framework for teaching science is a heuristic tool used to help preservice teachers conceptualize many complexities of teaching while making explicit the strategy to use a research-based body of professional knowledge to inform instructional decision-making (Clough, 2003, Paper presented at the annual meeting of the Association for the Education of Teachers in Science, St. Louis, MO). Elementary preservice teachers frequently struggle to apply this knowledge to classroom decisions (Madsen, 2002, Paper presented at the annual meeting of the North Central Association for the Education of Teachers of Science, Bettendorf, IA). This study examined the effects of using a video case-analysis within an elementary science methods course focused on the development of a research-based framework. Students in two course sections completed a unit plan, and students in one section completed the video analysis. Video analysis students’ performance on an oral defense with the instructor was compared with oral defense performance from students in the unit plan group. Video analysis students outperformed their peers on questions related to how learning theories influence decisions of selecting content, explaining the use of questioning, and the use of self assessment strategies. Despite these differences, students in both groups still perceive teaching as primarily accomplished through activities and have difficulties understanding the critical role of the teacher in promoting student goals. This study raises issues regarding teachers’ knowledge development during preservice experiences.  相似文献   

19.
This investigation assessed the impact of situating explicit nature of science (NOS) instruction within the issues surrounding global climate change and global warming (GCC/GW). Participants in the study were 15 preservice elementary teachers enrolled in a science methods course. The instructional intervention included explicit NOS instruction combined with explicit GCC/GW instruction situated within the normal elementary science methods curriculum. Participants’ conceptions of NOS and GCC/GW were assessed with pre- and postadministrations of open-ended questionnaires and interviews. Results indicated that participants’ conceptions of NOS and GCC/GW improved over the course of the semester. Furthermore, participants were able to apply their conceptions to decision making about socioscientific issues. The results provide support for context-based NOS instruction in an elementary science methods course.  相似文献   

20.
The National Science Education Standards (National Research Council 1996, National science education standards. Washington, DC: National Academy Press) and various other national and state documents call for teachers who possess science content knowledge, employ an inquiry approach in teaching, and engage in reflective practices. This paper describes a rationale for choosing particular recommendations to implement and how we incorporated those as we revised our elementary science education program. An analysis of the impact of the reformed inquiry-based content courses revealed that students who take more than one reformed content course improve their science content knowledge and efficacy towards teaching science significantly more than students who take fewer courses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号