首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The BIO2010 report provided a compelling argument for the need to create learning experiences for undergraduate biology students that are more authentic to modern science. The report acknowledged the need for research that could help practitioners successfully create and reform biology curricula with this goal in mind. Our objective in this article was to explore how a set of six design heuristics could be used to evaluate the potential of curricula to support productive learning experiences for science students. We drew on data collected during a long-term study of an undergraduate traineeship that introduced students to mathematical modeling in the context of modern biological problems. We present illustrative examples from this curriculum that highlight the ways in which three heuristics—instructor role-modeling, holding students to scientific norms, and providing students with opportunities to practice these norms—consistently supported learning across the curriculum. We present a more detailed comparison of two different curricular modules and explain how differences in student authority, problem structure, and access to resources contributed to differences in productive engagement by students in these modules. We hope that our analysis will help practitioners think in more concrete terms about how to achieve the goals set forth by BIO2010.  相似文献   

2.
Laboratory work is considered essential in promoting students’ learning of science and of scientific inquiry. What the students perceive as important to learn from a regular laboratory exercise is probably affected by the teacher’s objectives. We study the extent to which one teacher’s objectives are fulfilled during lab work, and how teacher–student and student–student interactions contribute to developing learning experiences from the laboratory exercise. Do students encounter opportunities to learn in agreement with the teacher’s objectives? This explanatory single case study includes use of a palette of methods, such as pre- and post-interviews, observations and video documentation from an experienced secondary school teacher and her 8th grade (aged 13–14) students’ laboratory work. Our results point to the importance of teacher involvement to help students understand what to look for, how to do it and why. Especially teacher–student interactions during lab work seemed to influence what students perceived as important to learn. In the laboratory exercise in this case, the teacher helped the students to observe and to use their observations in their explanations. The lab work included learning experiences other than those addressed by the teacher, and the teacher’s intentions were partially fulfilled. Not only what the teacher says, but also how the teacher acts is important to help students understand what to learn from a laboratory exercise.  相似文献   

3.
Images are powerful means of communicating scientific results; a strong image can underscore an experimental result more effectively than any words, whereas a poor image can readily undermine a result or conclusion. Developmental biologists rely extensively on images to compare normal versus abnormal development and communicate their results. Most undergraduate lab science courses do not actively teach students skills to communicate effectively through images. To meet this need, we developed a series of image portfolio assignments and imaging workshops in our Developmental Biology course to encourage students to develop communication skills using images. The improvements in their images over the course of the semester were striking, and on anonymous course evaluations, 73% of students listed imaging skills as the most important skill or concept they learned in the course. The image literacy skills acquired through simple lab assignments and in-class workshops appeared to stimulate confidence in the student's own evaluations of current scientific literature to assess research conclusions. In this essay, we discuss our experiences and methodology teaching undergraduates the basic criteria involved in generating images that communicate scientific content and provide a road map for integrating this curriculum into any upper-level biology laboratory course.  相似文献   

4.
Inquiry-driven lab exercises require students to think carefully about a question, carry out an investigation of that question, and critically analyze the results of their investigation. Here, we describe the implementation and assessment of an inquiry-based laboratory exercise in which students obtain and analyze novel data that contribute to our understanding of macromolecular trafficking between the nucleus and cytoplasm in eukaryotic cells. Although many of the proteins involved in nucleocytoplasmic transport are known, the physical interactions between some of these polypeptides remain uncharacterized. In this cell and molecular biology lab exercise, students investigate novel protein–protein interactions between factors involved in nuclear RNA export. Using recombinant protein expression, protein extraction, affinity chromatography, SDS-polyacrylamide gel electrophoresis, and Western blotting, undergraduates in a sophomore-level lab course identified a previously unreported association between the soluble mRNA transport factor Mex67 and the C-terminal region of the yeast nuclear pore complex protein Nup1. This exercise immersed students in the process of investigative science, from proposing and performing experiments through analyzing data and reporting outcomes. On completion of this investigative lab sequence, students reported enhanced understanding of the scientific process, increased proficiency with cellular and molecular methods and content, greater understanding of data analysis and the importance of appropriate controls, an enhanced ability to communicate science effectively, and an increased enthusiasm for scientific research and for the lab component of the course. The modular nature of this exercise and its focus on asking novel questions about protein–protein interactions make it easily transferable to undergraduate lab courses performed in a wide variety of contexts.  相似文献   

5.
PlantingScience is an award-winning program recognized for its innovation and use of computer-supported scientist mentoring. Science learners work on inquiry-based experiments in their classrooms and communicate asynchronously with practicing plant scientist-mentors about the projects. The purpose of this study was to identify specific factors contributing to the program’s effectiveness in engaging students. Using multiple data sources, grounded theory (Strauss and Corbin in Basics of qualitative research. Sage, Newbury Park, 1990) was used to develop a conceptual model identifying the central phenomenon, causal conditions, intervening conditions, strategies, contexts, and student outcomes of the project. Student motivation was determined to be the central phenomenon explaining the success of the program, with student empowerment, online mentor interaction, and authenticity of the scientific experiences serving as causal conditions. Teachers contributed to student motivation by giving students more freedom, challenging students to take projects deeper, encouraging, and scaffolding. Scientists contributed to student motivation by providing explanations, asking questions, encouraging, and offering themselves as partners in the inquiry process. Several positive student outcomes of the program were uncovered and included increased positivity, greater willingness to take projects deeper, better understanding of scientific concepts, and greater commitments to collaboration. The findings of this study provide relevant information on how to develop curriculum, use technology, and train practitioners and mentors to utilize strategies and actions that improve learners’ motivation to engage in authentic science in the classroom.  相似文献   

6.
Most physics professors would agree that the lab experiences students have in introductory physics are central to the learning of the concepts in the course. It is also true that these physics labs require time and money for upkeep, not to mention the hours spent setting up and taking down labs. Virtual physics lab experiences can provide an alternative or supplement to these traditional hands-on labs. However, physics professors may be very hesitant to give up the hands-on labs, which have been such a central part of their courses, for a more cost and time-saving virtual alternative. Thus, it is important to investigate how the learning from these virtual experiences compares to that acquired through a hands-on experience. This study evaluated a comprehensive set of virtual labs for introductory level college physics courses and compared them to a hands-on physics lab experience. Each of the virtual labs contains everything a student needs to conduct a physics laboratory experiment, including: objectives, background theory, 3D simulation, brief video, data collection tools, pre- and postlab questions, and postlab quiz. This research was conducted with 224 students from two large universities and investigated the learning that occurred with students using the virtual labs either in a lab setting or as a supplement to hands-on labs versus a control group of students using the traditional hands-on labs only. Findings from both university settings showed the virtual labs to be as effective as the traditional hands-on physics labs.  相似文献   

7.
Recent curriculum design projects have attempted to engage students in authentic science learning experiences in which students engage in inquiry‐based research projects about questions of interest to them. Such a pedagogical and curricular approach seems an ideal space in which to construct what Lee and Fradd referred to as instructional congruence. It is, however, also a space in which the everyday language and literacy practices of young people intersect with the learning of scientific and classroom practices, thus suggesting that project‐based pedagogy has the potential for conflict or confusion. In this article, we explore the discursive demands of project‐based pedagogy for seventh‐grade students from non‐mainstream backgrounds as they enact established project curricula. We document competing Discourses in one project‐based classroom and illustrate how those Discourses conflict with one another through the various texts and forms of representation used in the classroom and curriculum. Possibilities are offered for reconstructing this classroom practice to build congruent third spaces in which the different Discourses and knowledges of the discipline, classroom, and students' lives are brought together to enhance science learning and scientific literacy. © 2001 John Wiley & Sons, Inc. J Res Sci Teach 38: 469–498, 2001  相似文献   

8.
What early experiences attract students to pursue an education and career in science, technology, engineering, and mathematics (STEM)? Does hands-on research influence them to persevere and complete a major course of academic study in STEM? We evaluated survey responses from 149 high school and undergraduate students who gained hands-on research experience in the 2007–2013 Aspiring Scientists Summer Internship Programs (ASSIP) at George Mason University. Participants demonstrated their strong interest in STEM by volunteering to participate in ASSIP and completing 300 h of summer research. The survey queried extracurricular experiences, classroom factors, and hands-on projects that first cultivated students’ interest in the STEM fields, and separately evaluated experiences that sustained their interest in pursuing a STEM degree. The majority of students (65.5%, p < 0.0001) reported extracurricular encounters, such as the influence of a relative or family member and childhood experiences, as the most significant factors that initially ignited their interest in STEM, while hands-on lab work was stated as sustaining their interest in STEM (92.6%). Based on these findings collected from a cohort of students who demonstrated a strong talent and interest in STEM, community-based programs that create awareness about STEM for both children and their family members may be key components for igniting long-term academic interest in STEM.  相似文献   

9.
Teachers use remote labs and simulations to augment or even replace hands-on science learning. We compared undergraduate students’ experiences with a remote lab and a simulation to investigate beliefs about and learning from the interactions. Although learning occurred in both groups, students were more deeply engaged while performing the remote lab. Remote lab users felt and behaved as though they completed a real scientific experiment. We also examined whether realistic visualizations improved the psychological and learning experiences for each lab. Students who watched live video of the device collecting their data in the remote lab felt most engaged with the task, suggesting that it is the combination of the realistic lab and realistic video that was of the greatest benefit.  相似文献   

10.
Abstract: Gestures may provide the long sought‐for bridge between science laboratory experiences and scientific discourse about abstract entities. In this article, we present our results of analyzing students' gestures and scientific discourse by supporting three assertions about the relationship between laboratory experiences, gestures, and scientific discourse: (1) gestures arise from the experiences in the phenomenal world, most frequently express scientific content before students master discourse, and allow students to construct complex explanations by lowering the cognitive load; (2) gestures provide a medium on which the development of scientific discourse can piggyback; and (3) gestures provide the material that “glues” layers of perceptually accessible entities and abstract concepts. Our work has important implications for laboratory experiments which students should attempt to explain while still in the lab rather than afterwards and away from the materials. © 2000 John Wiley & Sons, Inc. J Res Sci Teach 38: 103–136, 2001  相似文献   

11.
从"挑战杯"谈新形势下实验室工作的几点设想   总被引:2,自引:0,他引:2  
本文在总结本单位组织学生参加各级“挑战杯“大学生课外科技作品竞赛活动的经验的基础上,紧密结合本校工科人才培养特色,从优化实验内容体系、高质量实验项目开发与管理等方面提出了加强工科实验教学的总体思路,并对实验室管理的制度建设和实验室开放性教学平台的构建提出了若干设想.  相似文献   

12.
This article reports an ethnographic study of a molecular biology research laboratory, “Sally's Lab.” By studying the daily practices of the lab members, and interpreting these observations through an anthropological lens grounded in practice theory, I portray the social and cultural construction of a scientific community. Findings include an examination of how good science practice was operationalized, status in the lab was constructed, members gained or lost interest in continuing on in careers in research science, and individual members conformed to and resisted localized norms of scientific practice. These issues have direct relevance to our work as science educators, in terms of how we present science practice to our students. For example, when K–16 science students engage in activities based on authentic science practice, upon whose experiences are these simulations based? The current study shows that there is not just one acceptable way to do science, nor one set of experiences that pertain to all members within a given community of science practice. Likewise, there should not be just one way that science is presented in school, nor one set of experiences we expect all our students to take from our classes. © 2001 John Wiley & Sons, Inc. J Res Sci Teach 38: 387–407, 2001  相似文献   

13.
为弥补传统实践教学的不足,进一步提高学生的自主学习能力和实践创新能力,提出了专业实验室对外开放方案。结合EDA技术,开发了一系列实用性强的实验项目,鼓励本科生早进实验室、早进团队,在开放实验室中学会利用最新技术构建专用的数字集成电路,学会利用专业实验仪器分析、测试数据,提高了学生的科研水平、团队合作意识和就业竞争能力。  相似文献   

14.
以“高等教育内涵式发展”为指导思想,在深入研究新形势下研究生教育规律及借鉴国内外先进的研究生教育理念和经验基础上,制定我校化学一级学科硕士研究生培养目标、培养方案及学位授予标准。在课程设置、教学内容及方法、培养方式、科研训练、导师指导、学位论文、培养过程管理等方面探索符合我校特点的化学一级学科硕士研究生培养新模式。  相似文献   

15.
Conclusion It seems reasonable to conclude that the impact of these projects has been extensive and that we have met our basic objectives regarding the improvement of science education for the target teachers and students. The long-term goal of improved scientific literacy of at least a part of the citizens of this country and world can only be assessed by some form of longitudinal study that is beyond the scope and funding for these projects. But our assessment of what has been accomplished in the short term efforts seems to indicate very positive gains in those areas of knowledge, confidence, and pedagogical capability that we believe will enable the participants to make contributions to the improvement of scientific literacy for the students with whom they work. In short, we believe we have had two successful and worthwhile programs that have been useful and effective.  相似文献   

16.
This study investigated the learning dimensions that occur in physical and virtual inquiry-based lab investigations, in first-year secondary chemistry classes. This study took place over a 2 year period and utilized an experimental crossover design which consisted of two separate trials of laboratory investigation. Assessment data and attitudinal data were gathered and analyzed to measure the instructional value of physical and virtual lab experiences in terms of student performance and attitudes. Test statistics were conducted for differences of means for assessment data. Student attitudes towards virtual experiences in comparison to physical lab experiences were measured using a newly created Virtual and Physical Experimentation Questionnaire (VPEQ). VPEQ was specifically developed for this study, and included new scales of Usefulness of Lab, and Equipment Usability which measured attitudinal dimensions in virtual and physical lab experiences. A factor analysis was conducted for questionnaire data, and reliability of the scales and internal consistency of items within scales were calculated. The new scales were statistically valid and reliable. The instructional value of physical and virtual lab experiences was comparable in terms of student performance. Students showed preference towards the virtual medium in their lab experiences. Students showed positive attitudes towards physical and virtual experiences, and demonstrated a preference towards inquiry-based experiences, physical or virtual. Students found virtual experiences to have higher equipment usability as well as a higher degree of open-endedness. In regards to student access to inquiry-based lab experiences, virtual and online alternatives were viewed favorably by students.  相似文献   

17.
在教学实践的基础上,阐述了比较高等教育课程改革的指导思想,课程的结构与特点、实际效果和体会。即:①课程的改革必须以学生为中心;②要以科研为基础。  相似文献   

18.
Active‐learning labs for two topics in high school biology were developed through the collaboration of high school teachers and university faculty and staff and were administered to 408 high school students in six classrooms. The content of instruction and testing was guided by State of Texas science objectives. Detailed teacher records describing daily classroom activities were used to operationalize two types of instruction: active learning, which used the labs; and traditional, which used the teaching resources ordinarily available to the teacher. Teacher records indicated that they used less independent work and fewer worksheets, and more collaborative and lab‐based activities, with active‐learning labs compared to traditional instruction. In‐class test data show that students gained significantly more content knowledge and knowledge of process skills using the labs compared to traditional instruction. Questionnaire data revealed that students perceived greater learning gains after completing the labs compared to covering the same content through traditional methods. An independent questionnaire administered to a larger sample of teachers who used the lab‐based curriculum indicated that they perceived changing their behaviors as intended by the student‐centered principles of the labs. The major implication of this study is that active‐learning–based laboratory units designed and developed collaboratively by high school teachers and university faculty, and then used by high school teachers in their classrooms, can lead to increased use of student‐centered instructional practices as well as enhanced content knowledge and process learning for students. © 2007 Wiley Periodicals, Inc. J Res Sci Teach 44: 960–979, 2007  相似文献   

19.

The aim of this paper is not to bury practical work in school science but to (once again) reconsider it. We draw on three main areas of discussion: accounts of science and ‘school science work'; teachers and others’ views of the nature of science; and our own data on teachers’ reactions to ‘critical incidents’ and practicals which go wrong. We use this as a basis for re‐thinking the role of practicals. An account of practical work is suggested which has as its main feature diversity rather than a single model or template. Within this diversity we believe that teachers should be open and honest with pupils about which type of practical work they are doing and why. We advocate that students should be made aware of the different kinds of practical work they do and the purposes of this practical work. In short, teachers should explain to students what type of practical work they are doing and why. Our second message is that teachers’ views about the nature of science both inform and are informed by their classroom practices and experiences‐‐especially during lab‐work. To encourage, promote and support critical reflection of these classroom practices and experiences is therefore a vital part of teacher professional development; this in time will promote science curriculum development.  相似文献   

20.
This article describes an undergraduate lab exercise that demonstrates the importance of students thinking critically about what they see through a microscope. The students are given growth data from tip-growing organisms that suggest the cells grow in a pulsatile manner. The students then critique this data in several exercises that incorporate aspects of a problem-based learning approach, envisaging growth not just in two dimensions, but in three dimensions. For some cells, what appears to be pulsatile growth could also be explained by growth at a constant rate up and down in the z-axis. Depending on the diffraction pattern generated by the tip of the cell, this movement in the z-axis could go undetected. This raises the possibility that pulsatile growth seen in some species may be an artifact generated by the limitations of the light microscope. Students were subsequently asked to rate their awareness of the need to think critically about what they see through a microscope, using a scale of 1 (unaware) to 5 (very much aware). Prior to doing the lab exercise, the mean rating was 2.7; this increased to 4.4 after the lab. The students also indicated a likelihood of being more critical in their thinking in other aspects of their biology curriculum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号