首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
考点解读直线和圆点击考点一直线方程的五种形式(1)斜截式:y=kx b;(2)点斜式:y-y0=k(x-x0);(3)两点式:(y-y1)/(y2-y1)=x-x1/(x2-x1);(4)截距式:x/a y/b=1;(5)一般式:Ax By C=0.注意直线方程的四种特殊  相似文献   

2.
1直设线直方线程l的经各过种点形P式都可以统一为点向式0(x0,y0),v=(a,b)为其一个方向向量(ab≠0),P(x,y)是直线上的任意一点,则向量P0P与v共线,根据向量共线的充要条件,存在唯一实数t,使P0P=tv,即x=x0+at,y=y0+bt.消去参数t得直线方程为x-x0a=y-y0b将其变形为b(x-x0)=a(y-y0).易证当ab=0时直线方程也是b(x-x0)=a(y-y0),我们称方程b(x-x0)=a(y-y0)为直线的点向式方程.1)经过点P0(x0,y0)且斜率为k的直线方程:斜率为k的直线方向向量为(1,k),代入点向式得直线方程为k(x-x0)=(y-y0).即为直线方程的点斜式.2)直线斜率为k,在y轴的截距为b,代入点向式得直线方程为k(x-0)=(y-b),也就是直线方程的斜截式.3)经过两点P1(x1,y1),P2(x2,y2)的直线方程:直线方向向量为(x2-x1,y2-y1),代入点向式得直线方程为(y2-y1)(x-x1)=(x2-x1)(y-y1),即为两点式.4)在x轴的截距为a,在y轴的截距为b的直线方程:直线方向向量为(0,b)-(a,0)=(-a,...  相似文献   

3.
众所周知,如果设直线方程为点斜式y-y0=k(x-x0)或斜截式y=kx+b,那么斜率k就必须是存在的,所以它表示的直线的倾斜角α的取值范围是0≤α&;lt;π且α≠π/2.但是在解决某些问题的时候,我们又必须考虑斜率不存在的情况.如何解决这个矛盾呢?其实方法很简单,只要将直线方程设为x-x0=m(y-y0)或x=my+a就可以了.因为这两个方程表示的直线,当m=0时就是斜率不存在的情形.下面举例说明.  相似文献   

4.
圆的直径式方程是指如果一个圆的直径的端点是A(x1,y1)、B(x2,y2),那么圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0  相似文献   

5.
求圆、椭圆、双曲线、抛物线的切线方程,思路明确,但其计算量往往令人“算而却步”,下面就上述四种曲线,来剖析它们切线方程的结构特征,以飨读者. 对于二次函数的切线方程我们是会求的,如求曲线y=px2(p≠0)在点(x2,y0)处的切线方程.斜率k=f1(x0)=2px0,由点斜式知:切线方程为y-y0=2px0(x-x0)(→)=y+y2/2=px·x0,即把原函数表达式中的y换成y+y0/2,把x2换成x·x0.  相似文献   

6.
习题:过圆x2+y2=r2(r〉0)上一点P(x0,y0)的切线方程为_________.解法1(利用△):当切线斜率存在时,设切线方程为:y-y0=k(x-x0),联立x2+y2=r2(r〉0)可得:(1+k2)x2+(2ky0-2k2x0)x-2kx0y0+k2x02+x02=0.  相似文献   

7.
直线方程教学后 ,引导学生联想、反思、类比、归纳 .与学生一起讨论了直线方程与等差数列的关系 ,对新、旧知识进行了融合和建构 .不仅可培养学生的发散思维能力、缩短思维的回路 ,而且可以更新学生的学习理念 .1 直线方程与等差数列有什么形式的直线方程就对应着什么形式的等差数列通项的表达式 .( 1 )斜截式方程y =kx +b(k为斜率 ;k =y2 -y1x2 -x1,x1≠x2 ) ;an=dn +b  (d =an-amn -m ,d为公差 ) .( 2 )点斜式 y -y1=k(x -x1) ;an-ap=d(n -p) (n ,p∈N+ ,p是常数 ) .( 3 )两点式 y -y1=y2 -y1x2 -x1(x -x1) (x1≠x2 ) ;an-ak=am-akm …  相似文献   

8.
如果直线l经过点A(x0 ,y0 )且斜率为k ,则直线l的方程为y - y0 =k(x -x0 ) ,反过来 ,如果直线l的方程为 :y- y0 =k(x-x0 ) ,那么直线l经过点A(x0 ,y0 ) ,在解题中 ,如果能逆用直线方程的点斜式 ,能简化解题过程 ,现分析几例 ,供参考 .     图 1例 1 曲线 y =4 -x2 + 1与直线 y=k(x- 2 ) + 4有两个交点 ,求k的范围 ,分析 该题若利用解方程的方法来解较繁 ,但若将直线方程变形为 y- 4=k(x- 2 ) ,会发现直线恒过定点A(2 ,4 ) ,这样就可以利用数形结合来解决 .解 将曲线方程变形得x2 + (y- 1) 2 =4  (y≥ 1) ,该曲线是以 (0 ,1)为圆…  相似文献   

9.
32.圆系方程: (1)过点A(x1,Y1),B(x2,y2),的圆系方程是:(x-x1)(x-x2)+(y-y1)(y-y2)+λ[(x-x1)(y1-y2)-(y-y1)(x1-x2)]=0→←(x-x1)(x-x2)+(y-y1)(y-y2)+λ(ax+by+c)=0,其中ax+by+c=0是直线AB的方程,λ是待定的系数。  相似文献   

10.
1.圆锥曲线的切线求法可导函数y=f(x)上任一点P(x0,y0)处的切线方程为y-y0=f^1(x0)(x-x0),其中f^1(x0)=lim△r→^△y/△x=lim△x→0f(x0+△x)-f(x0)/△x,  相似文献   

11.
代数式的变形是中学数学中一类常用的解题技巧,其方法灵活多变,我们在化简、求值、证明恒等式(不等式)和解方程(不等式)的过程中,常需将代数式变形,现结合实例,对代数式变形中一些常用方法和技巧作一介绍。一、变化已知条件或所求式例1 若1/x-1/y=3,则2x+3xy-2y/x-2y-y=___。解:由若1/x-1/y=3可知x-y=3xy,所以 2x+3xy-2y/x-2y-y =2(x-y)+3xy/(x-y)-2xy =2(-3xy)+3xy/-3xy-2xy=3/5。例2 如果a是x~2-3x+1=0的根,试  相似文献   

12.
1.经过定点的直线系方程 经过定点M(x0,y0)的直线y-y0=k·(x-x0)(k为参数)是一束直线(不包括与y轴平行的那一条x=x0),所以y-y0=k(x-x0)(是为参数)是通过定点M(x0,y0)的直线系方程.  相似文献   

13.
例1过原点作三次函数y=x3的图像的切线,能作几条?写出其方程.解设切点为P(x0,y0),∵y’=3x2,∴以P为切点的切线的斜率k=3x20,切线方程为y-y0=k(x-x0),即y=3x20x-3x30+y0=3x20x-2x30.由于切线过原点,∴0=3x20·0-2x30,∴x0=0,从而y0=0,k=0.  相似文献   

14.
命题:若直线y=kx+m与双曲线x2/a2-y2/b2=1相交于A,B两点,M(x0,y0)为AB的中点,则b2x0-ka2y0=0. 证明:设A(x1,y1),B(x2,y2), 则x1+x2=2x0,y1+y2=2y0,y2-y1/x2-x1=k 由于A、B两点在双曲线上得: x12/a2-y12/b2=1 ①,x22/a2-y22/b2=1②  相似文献   

15.
文 [1 ]、[2 ]分别探讨了直线方程 x0 xa2 +y0 yb2 =1和直线方程 x0 xa2 -y0 yb2 =1的几何意义。两篇论文给出的结论对于研究椭圆和双曲线具有非常重要的意义。其实对于抛物线、圆也有类似的结论 ,作为对两篇论文的补充现给出抛物线与之相关的定理。定理 1 已知P0 (x0 ,y0 )是抛物线 y2 =2 px上的任意一点 ,则直线 y0 y =p(x0 +x)表示此抛物线上以P0 (x0 ,y0 )为切点的切线。证明 当 y0 >0时 ,抛物线的方程可以写成 y =± 2 px,则 y′=± p2 px,所以P0 (x0 ,y0 )为切点的切线的斜率为± p2px0,切线的方程为 y-y0 =± p2 px0(x -x0 ) ,即…  相似文献   

16.
结论1 以点(x0,y0)为圆心、以r(r为参数)为半径的圆系方程为:(x—x0)^2+(y-y0)^2=r^2.  相似文献   

17.
求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点P(x0,y0)及斜率,其求法为:设P(x0,y0)是曲线y=f(x)上的一点,则以P为切点的切线方程为:y-y0=f’(x0)(x-x0).若曲线y=f(x)在点P(x0,f(x0))的切线平行于y轴(即导数不存在)时,由切线定义知,切线方程为x=x0.  相似文献   

18.
大家知道,直线方程y-y0=k(x-x0)中,若M0(x0,y0)为定点,k为参数,则可视其为过定点M0(x0,y0)的直线系方程.  相似文献   

19.
参数法是求曲线方程的一种重要方法.参数的引进给建立曲线方程带来了方便,但消去参数却并非一件容易的事情,按常规思路有时运算量很大,有时却无法达到消参的目的.本文从消参时解题思路的递进谈谈消去参数的灵活变通.例1自双曲线x2-y2=1上一动点Q引直线l:x+y=2的垂线,垂足为N,求线段QN中点P的轨迹方程.解设Q(x1,y1),P(x,y),(尽可能少设变量)则N(2x-x1,2y-y1).因为QP⊥l,所以y-y1/x-x1=1①又N在l上,所以(2x-x1)+(2y-y1)=2.②I.若按常规思路,则联立①②,解得x1=3x+y-2/2,y1=3y+x-2/2.因为Q在椭圆上,代入Q的轨迹方程,得((3x+y-2)/2)2-((3y+x-2)/2)2=1.变形整理得2x2-2y2-2x+2y-1=0.(以上"解得"、"变形整理"都有比较大的运算量))量)  相似文献   

20.
二元二次齐方程Ax2 Bxy Cy2=0,当B2-4AC>0时所表示的曲线是过坐标原点的两条直线.此统一方程在求解直线与圆锥曲线的有关问题时有着巧妙的用途,其思想方法如下:若把圆锥曲线的弦所在直线方程ax by=1代入圆锥曲线方程,将其转化为关于x、y的二次齐次方程Ax2 Bxy Cy2=0,再化成C(y/x)2 B(y/x) A=0的形式,则弦的两个端点A(x1,y1)、B(x2,y2)与原点的两条连线的斜率k1=y1/x1,k2=y2/x2为其两根,从而利用韦达定理可使相关问题获解.下面举例加以说明.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号