首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundOptimization of nutrient feeding was developed to improve the growth of Bacillus subtilis in fed batch fermentation to increase the production of jiean-peptide (JAA). A central composite design (CCD) was used to obtain a model describing the relationship between glucose, total nitrogen, and the maximum cell dry weight in the culture broth with fed batch fermentation in a 5 L fermentor.ResultsThe results were analyzed using response surface methodology (RSM), and the optimized values of glucose and total nitrogen concentration were 30.70 g/L and 1.68 g/L in the culture, respectively. The highest cell dry weight was improved to 77.50 g/L in fed batch fermentation, which is 280% higher than the batch fermentation concentration (20.37 g/L). This led to a 44% increase of JAA production in fed batch fermentation as compared to the production of batch fermentation.ConclusionThe results of this work improve the present production of JAA and may be adopted for other objective products' production.  相似文献   

2.
BackgroundCellulose as a potential feed resource hinders its utilization because of its complex structure, and cellulase is the key to its biological effective utilization. Animal endogenous probiotics are more susceptible to colonization in the intestinal tract, and their digestive enzymes are more conducive to the digestion and absorption of feed in young animals. Min pigs are potential sources of cellulase probiotics because of the high proportion of dietary fiber in their feed. In this study, the cellulolytic bacteria in the feces of Min pigs were isolated and screened. The characteristics of enzymes and cellulase production were studied, which provided a theoretical basis for the rational utilization of cellulase and high-fiber food in animal production.ResultsIn our study, 10 strains of cellulase producing strains were isolated from Min pig manure, among which the M2 strain had the best enzyme producing ability and was identified as Bacillus velezensis. The optimum production conditions of cellulase from strain M2 were: 2% inoculum, the temperature of 35°C, the pH of 5.0, and the liquid loading volume of 50 mL. The optimum temperature, pH and time for the reaction of cellulase produced by strain M2 were 55°C, 4.5 and 5 min, respectively.ConclusionsMin pigs can be used as a source of cellulase producing strains. The M2 strain isolated from feces was identified as Bacillus velezensis. The cellulase from M2 strain had a good activity and the potential to be used as feed additive for piglets.How to cite: Li F, Xie Y, Gao X, et al. Screening of cellulose degradation bacteria from Min Pigs and optimization of its cellulase production. Electron J Biotechnol 2020;48. https://doi.org/10.1016/j.ejbt.2020.09.001  相似文献   

3.
BackgroundThe Tibetan pig is a pig breed with excellent grazing characteristics indigenous to the Qinghai–Tibet plateau in China. Under conditions of barn feeding, 90% of its diet consists of forage grass, which helps meet its nutritional needs. The present study aimed to isolate and identify a cellulolytic bacterium from the Tibetan pig's intestine and investigate cellulase production by this bacterium. The study purpose is to provide a basic theory for the research and development of herbivore characteristics and to identify a source of probiotics from the Tibetan pig.ResultsA cellulolytic bacterium was isolated from a Tibetan pig's intestine and identified based on morphological, physiological, and biochemical characteristics as well as 16S rRNA analysis; it was designated Bacillus subtilis BY-2. Examination of its growth characteristics showed that its growth curve entered the logarithmic phase after 8–12 h and the stable growth phase being between 20 and 40 h. The best carbon source for fermentation was 1% corn flour, while 2% peptone and yeast powder compound were the best nitrogen sources. The initial pH during fermentation was 5.5, with 4% inoculum, resulting in a high and stable amount of enzyme in 24–48 h.ConclusionsThe isolated BY-2 strain rapidly grew and produced cellulase. We believe that BY-2 cellulase can help overcome the shortage of endogenous animal cellulase, improve the utilization rate of roughage, and provide strain sources for research on porcine probiotics.  相似文献   

4.
BackgroundBiohydrogen effluent contains a high concentration of volatile fatty acid (VFA) mainly as butyric, acetic, lactic and propionic acids. The presence of various VFAs (mixture VFAs) and their cooperative effects on two-stage biohythane production need to be further studied. The effect of VFA concentrations in biohydrogen effluent of palm oil mill effluent (POME) on methane yield in methane stage of biohythane production was investigated.ResultsThe methane yield obtained in low VFA loading (0.9 and 1.8 g/L) was 15–20% times greater than that of high VFA loading (3.6 and 4.7 g/L). Butyric acid at high concentrations (8 g/L) has the individual significantly negative effect the methane production process (P < 0.05). Lactic, acetic and butyric acid mixed with propionic acid at a concentration higher than 0.5 g/L has an interaction significantly negative effect on the methanogenesis process (P < 0.05). Inhibition condition had a negative effect on both bacteria and archaea with inhibited on Geobacillus sp., Thermoanaerobacterium thermosaccharolyticum, Methanoculleus thermophilus and Methanothermobacter delfuvii resulting in low methane yield.ConclusionPreventing the high concentration of butyric acid, and propionic acid in the hydrogenic effluent could enhance methane production in two-stage anaerobic digestion for biohythane production.  相似文献   

5.
BackgroundDependence on fossil resources, for the production of fuels and energy, has resulted in environmental and financial problems, which require our immediate action in order to reverse the situation. Use of renewable sources for the production of fuels and energy is an important alternative with biodiesel remains as one of the promising options. Aim of this work is to evaluate the fungus Fusarium oxysporum for its potentials to accumulate microbial lipids when grown on synthetic media and saccharified sweet sorghum stalks.ResultsThe effect of different carbon sources, nitrogen sources and C/N ratio on the lipid production was initially examined, which resulted in a lipid concentration of 4.4 g/L, with lipid content of 42.6% w/w. Sweet sorghum stalks were able to support growth and lipid production of the fungus, both as carbon source and as nitrogen source. It was also shown that saccharification of the dried stalks is an important step to increase lipid production. Removal of the remaining stalk solids enabled the lipid production during cultivation in increased initial solids of up to 16 w/w. This resulted in a lipid production of 3.81 g/L.ConclusionsIt was demonstrated that F. oxysporum can be used as an efficient oleaginous microorganism, with sweet sorghum serving as an excellent raw material for the cultivation of the fungus. The lipids obtained during this work were also found to have a fatty acid profile with good potentials to be used for biodiesel production.  相似文献   

6.
BackgroundEndoglucanase plays a major role in initiating cellulose hydrolysis. Various wild-type strains were searched to produce this enzyme, but mostly low extracellular enzyme activities were obtained. To improve extracellular enzyme production for potential industrial applications, the endoglucanase gene of Bacillus subtilis M015, isolated from Thai higher termite, was expressed in a periplasmic-leaky Escherichia coli. Then, the crude recombinant endoglucanase (EglS) along with a commercial cellulase (Cel) was used for hydrolyzing celluloses and microbial hydrolysis using whole bacterial cells.ResultsE. coli Glu5 expressing endoglucanase at high levels was successfully constructed. It produced EglS (55 kDa) with extracellular activity of 18.56 U/mg total protein at optimal hydrolytic conditions (pH 4.8 and 50°C). EglS was highly stable (over 80% activity retained) at 40–50°C after 100 h. The addition of EglS significantly improved the initial sugar production rates of Cel on the hydrolysis of carboxymethyl cellulose (CMC), microcrystalline cellulose, and corncob about 5.2-, 1.7-, and 4.0-folds, respectively, compared to those with Cel alone. E. coli Glu5 could secrete EglS with high activity in the presence of glucose (1% w/v) and Tween 80 (5% w/v) with low glucose consumption. Microbial hydrolysis of CMC using E. coli Glu5 yielded 26 mg reducing sugar/g CMC at pH 7.0 and 37°C after 48 h.ConclusionsThe recombinant endoglucanase activity improved by 17 times compared with that of the native strain and could greatly enhance the enzymatic hydrolysis of all studied celluloses when combined with a commercial cellulase.  相似文献   

7.
BackgroundBiosurfactants are surface active molecules produced by microorganisms which have the ability to disrupt the plasma membrane. Biosurfactant properties are important in the food, pharmaceutical and oil industries. Lactic acid bacteria can produce cell-bound and excreted biosurfactants.ResultsThe biosurfactant-producing ability of three Lactobacillus strains was analyzed, and the effects of carbon and nitrogen sources and aeration conditions were studied. The three species of lactobacillus evaluated were able to produce biosurfactants in anaerobic conditions, which was measured as the capacity of one extract to reduce the surface tension compared to a control. The decreasing order of biosurfactant production was L. plantarum>Lactobacillus sp.>L. acidophilus. Lactose was a better carbon source than glucose, achieving a 23.8% reduction in surface tension versus 12.9% for glucose. Two complex nitrogen sources are required for growth and biosurfactant production. The maximum production was reached at 48 h under stationary conditions. However, the highest level of production occurred in the exponential phase. Biosurfactant exhibits a critical micelle concentration of 0.359 ± 0.001 g/L and a low toxicity against E. coli. Fourier transform infrared spectroscopy indicated a glycoprotein structure. Additionally, the kinetics of fermentation were modeled using a logistic model for the biomass and the product, achieving a good fit (R2 > 0.9).ConclusionsL. plantarum derived biosurfactant production was enhanced using adequate carbon and nitrogen sources, the biosurfactant is complex in structure and because of its low toxicity could be applied to enhance cell permeability in E. coli.How to cite: Montoya Vallejo C, Florez Restrepo MA, Guzmán Duque FL, et al. Production, characterization and kinetic model of biosurfactant produced by lactic acid bacteria. Electron J Biotechnol 2021;53. https://doi.org/10.1016/j.ejbt.2021.06.001  相似文献   

8.
BackgroundLactic acid bacteria are able to reduce the immunoreactivity of proteins of cereal grains during wheat dough fermentation or may be a source of proteolytic preparations added during bread making. The key enzyme in prolamin degradation is prolyl endopeptidase. This study was aimed at optimizing the composition of a culture medium and culture conditions that would enhance the synthesis of intracellular prolyl endopeptidase (PEP) by Lactobacillus acidophilus 5e2.ResultsThe application of Plackett–Burman screening plans enabled demonstrating that the concentration of a nitrogen source in the culture and the initial pH value of the culture medium were significant for PEP synthesis. Further optimization conducted with the method of central composite designs (CCD) confirmed both the linear and square impact of nitrogen concentration and initial pH value of the culture medium on PEP production. In turn, the response surface method (RSM) allowed determining the optimal nitrogen concentration and pH value at 26.88 g/l and pH 4.85, respectively.ConclusionsValidation of the resultant model enabled over 3-fold increase in the quantity of the synthesized enzyme.  相似文献   

9.
10.
BackgroundMucor indicus is a dimorphic fungus used in the production of ethanol, oil, protein, and glucosamine. It can ferment different pentoses and hexoses; however, the yields of products highly depend on the nutrients and cultivation conditions. In this study, the effects of different morphologic forms, cultivation time and temperature, presence or absence of oxygen, carbon sources, and concentration of nitrogen source on the products of M. indicus were investigated.ResultsThe fungus with all morphologies produced high yields of ethanol, in the range of 0.32–0.43 g/g, on glucose. However, the fungus with filamentous morphology produced higher amounts of oil, protein, phosphate, and glucosamine together with ethanol, compared with other morphologies. A higher amount of oil (0.145 g/g biomass) was produced at 28°C, while the best temperature for protein and glucosamine production was 32 and 37°C, respectively. Although ethanol was produced at a higher yield (0.44 g/g) under anaerobic conditions compared with aerobic conditions (yield of 0.41 g/g), aerobic cultivation resulted in higher yields of protein (0.51 g/g biomass), glucosamine (0.16 g/g alkali insoluble material, AIM), and phosphate (0.11 g/g AIM).ConclusionsIt is not possible to have the maximum amounts of the products simultaneously. The fermentation conditions and composition of culture media determine the product yields. Carbon source type and the addition of nitrogen source are among the most influencing factors on the product yields. Moreover, all measured products were made with higher yields in cultivation on glucose, except glucosamine, which was produced with higher yields on xylose.  相似文献   

11.
BackgroundThe aim of this work was to purify and characterize exo-β-1,3-glucanase, namely, TtBgnA, from the thermophilic fungus Thielavia terrestris Co3Bag1 and to identify the purified enzyme.ResultsThe thermophilic biomass-degrading fungus T. terrestris Co3Bag1 displayed β-1,3-glucanase activity when grown on 1% glucose. An exo-β-1,3-glucanase, with an estimated molecular mass of 129 kDa, named TtBgnA, was purified from culture filtrates from T. terrestris Co3Bag1. The enzyme exhibited optimum activity at pH 6.0 and 70°C and half-lives (t1/2) of 54 and 37 min at 50 and 60°C, respectively. Substrate specificity analysis showed that laminarin was the best substrate studied for TtBgnA. When laminarin was used as the substrate, the apparent KM and Vmax values were determined to be 2.2 mg mL-1 and 10.8 U/mg, respectively. Analysis of hydrolysis products by thin-layer chromatography (TLC) revealed that TtBgnA displays an exo mode of action. Additionally, the enzyme was partially sequenced by tandem mass spectrometry (MS/MS), and the results suggested that TtBgnA from T. terrestris Co3Bag1 could be classified as a member of the GH-31 family.ConclusionsThis report thus describes the purification and characterization of TtBgnA, a novel exo-β-1,3-glucanase of the GH-31 family from the thermophilic fungus T. terrestris Co3Bag1. Based on the biochemical properties displayed by TtBgnA, the enzyme could be considered as a candidate for potential biotechnological applications.How to cite: Rodríguez-Mendoza J, Santiago-Hernández A, Alvarez-Zúñiga MT, et al. Purification and biochemical characterization of a novel thermophilic exo-β-1,3-glucanase from the thermophile biomass-degrading fungus Thielavia terrestris Co3Bag1. Electron J Biotechnol 2019;41. https://doi.org/10.1016/j.ejbt.2019.07.001  相似文献   

12.
BackgroundPlanctomycetes is a phylum of biofilm-forming bacteria with numerous biosynthetic gene clusters, offering a promising source of new bioactive secondary metabolites. However, the current generation of chemically defined media achieves only low biomass yields, hindering research on these species. We therefore developed a chemically defined medium for the model organism Planctopirus limnophila to increase biomass production.ResultsWe found that P. limnophila grows best with a 10 mM sodium phosphate buffer. The replacement of complex nitrogen sources with defined amino acid solutions did not inhibit growth. Screening for vitamin requirements revealed that only cyanocobalamin (B12) is needed for growth. We used response surface methodology to optimize the medium, resulting in concentrations of 10 g/L glucose, 34 mL/L Hutner’s basal salts, 23.18 mM KNO3, 2.318 mM NH4Cl and 0.02 mg/L cyanocobalamin. The analysis of amino acid consumption allowed us to develop a customized amino acid solution lacking six of the amino acids present in Aminoplasmal 10%. Fed-batch cultivation in a bioreactor using the optimized medium achieved a final ΔOD600 of 46.8 ± 0.5 after 108 h, corresponding to a cell dry weight of 13.6 ± 0.7 g/L.ConclusionsThe optimized chemically defined medium allowed us to produce larger amounts of biomass more quickly than reported in earlier studies. Further research should focus on triggering P. limnophila biofilm formation to activate the gene clusters responsible for secondary metabolism.How to cite: Kruppa OC, Gerlach D, Fan R, et al. Development of a chemically defined medium for Planctopirus limnophila to increase biomass production. Electron J Biotechnol 2021;54. https://doi.org/10.1016/j.ejbt.2021.09.002.  相似文献   

13.
BackgroundThe enzymes utilized in the process of beer production are generally sensitive to higher temperatures. About 60% of them are deactivated in drying the malt that limits the utilization of starting material in the fermentation process. Gene transfer from thermophilic bacteria is a promising tool for producing barley grains harboring thermotolerant enzymes.ResultsGene for α-amylase from hydrothermal Thermococcus, optimally active at 75–85°C and pH between 5.0 and 5.5, was adapted in silico to barley codon usage. The corresponding sequence was put under control of the endosperm-specific promoter 1Dx5 and after synthesis and cloning transferred into barley by biolistics. In addition to model cultivar Golden Promise we transformed three Slovak barley cultivars Pribina, Levan and Nitran, and transgenic plants were obtained. Expression of the ~ 50 kDa active recombinant enzyme in grains of cvs. Pribina and Nitran resulted in retaining up to 9.39% of enzyme activity upon heating to 75°C, which is more than 4 times higher compared to non-transgenic controls. In the model cv. Golden Promise the grain α-amylase activity upon heating was above 9% either, however, the effects of the introduced enzyme were less pronounced (only 1.22 fold difference compared with non-transgenic barley).ConclusionsExpression of the synthetic gene in barley enhanced the residual α-amylase activity in grains at high temperatures.  相似文献   

14.
BackgroundTextile and dye industries pose a serious threat to the environment. Conventional methods used for dye treatment are generally not always effective and environmentally friendly. This drove attention of scores of researchers to investigate alternative methods for the biodegradation of dyes using fungal strains. In this work, white-rot fungus (Panus tigrinus) was used as a biosorbent for the decolorization of Reactive Blue 19. The process parameters that were varied were initial concentration (50–150 mg/L), contact time (30–90 min), and pH (2–6). In addition, to gain important data for the evaluation of a sorption process, the equilibrium and kinetics of the process were determined.ResultsWhite-rot fungus showed great potential in decolorizing Azo dyes. The strain showed the maximum decolorization of 83.18% at pH 2, a contact time of 90 min, and an initial concentration of 50 mg/L. The Langmuir isotherm described the uptake of the Reactive Blue 19 dye better than the Freundlich isotherm. Analysis of the kinetic data showed that the dye uptake process followed the pseudo second-order rate expression.ConclusionThe biosorption process provided vital information on the process parameters required to obtain the optimum level of dye removal. The isotherm study indicated the homogeneous distribution of active sites on the biomass surface, and the kinetic study suggested that chemisorption is the rate-limiting step that controlled the biosorption process. According to the obtained results, P. tigrinus biomass can be used effectively to decolorize textile dyes and tackle the pollution problems in the environment.  相似文献   

15.
BackgroundThe paper reports on the utilization of palm kernel oil (PKO) as a low cost renewable substrate for medium-chain-length poly-3-hydroxyalkanoates (mcl-PHA) production by Pseudomonas putida BET001. Investigation on the effects of selected key variables on growth, mixed free fatty acids consumption and mcl-PHA production by the bacterial culture in the shaken flask system were carried out along with its kinetic modeling.ResultsThe biomass production, fatty acids consumption and mcl-PHA production were found favorable when the strain was cultured in mineral medium at pH 6–7, 28°C, aeration surface-to-volume ratio of 0.4 × 106 m- 1, 250 rpm agitation rate for 48 h. Mcl-PHA production by this strain showed mixed growth and non-growth associated components as described by Luedeking–Piret kinetic model.ConclusionThe findings of this study provided add to the literature on key variables in for achieving good microbial growth and mcl-PHA production in shake flasks culture. In addition, suitable kinetic model to describe cultivation in this system was also presented.  相似文献   

16.
BackgroundThree oligosaccharides (EOS, WOS and SOS) were respectively prepared from the corresponding polysaccharides, namely exopolysaccharide (EPS), water-extracted mycelial polysaccharide (WPS) and sodium hydroxide-extracted mycelial polysaccharides (SPS) from the endophytic fungus Fusarium oxysporum Dzf17. In this study, the effects of EOS, WOS and SOS on the activities of the defense-related enzymes, namely phenylalanine ammonia lyase (PAL), polyphenoloxidase (PPO) and peroxidase (POD) in its host plant Dioscorea zingiberensis cultures were investigated.ResultsFor the suspension cell cultures of D. zingiberensis, the highest PAL activity was induced by 0.5 mg/mL of WOS at 48 h after treatment, which was 4.55-fold as that of control. Both PPO and POD activities were increased to the maximum values by 0.25 mg/mL of WOS at 48 h after treatment, which were respectively 3.74 and 3.45-fold as those of control. For the seedling cultures, the highest PAL activity was elicited by 2.5 mg/mL of EOS at 48 h after treatment, which was 3.62-fold as that of control. Both PPO and POD reached their maximum values treated with 2.5 mg/mL of WOS at 48 h after treatment, which were 4.61 and 4.19-fold as those of control, separately.ConclusionsBoth EOS and WOS significantly increased the activities of PAL, PPO and POD in the suspension cell and seedling cultures of D. zingiberensis. The results suggested that the oligosaccharides from the endophytic fungus F. oxysporum Dzf17 may be related to the activation and enhancement of the defensive mechanisms of D. zingiberensis suspension cell and seedling cultures.  相似文献   

17.
BackgroundSurfactants are one of the most important raw materials used in various industrial fields as emulsifiers, corrosion inhibitors, foaming agents, detergent products, and so on. However, commercial surfactant production is costly, and its demand is steadily increasing. This study aimed to evaluate the performance of typical strains of Bacillus sp. to produce biosurfactants through fermentation. It also included the investigation of the effect of initial glucose concentration and the carbon to nitrogen ratio.ResultsThe biosurfactant yield was in the range of 1–2.46 g/L at initial glucose concentrations of 10–70 g/L. The optimum fermentation condition was achieved at a carbon to nitrogen ratio of 12.4, with a decrease in surface tension of up to 27 mN/m.ConclusionsFor further development and industrial applications, the modified Gompertz equation is proposed to predict the cell mass and biosurfactant production as a goodness of fit was obtained with this model. The modified Gompertz equation was also extended to enable the excellent prediction of the surface tension.  相似文献   

18.
BackgroundBiotechnological processes are costly, especially for the production of biosurfactants. The successful production of a biosurfactant is dependent on the development of processes using low cost raw materials. Considering the importance of the characteristics of a biosurfactant to facilitate its industrial application, the properties of the biosurfactant produced by Candida lipolytica through previously optimized medium have been established.ResultsThe yeast was grown for 72 h to determine the kinetics of growth and production. The surface tension of the cell-free broth was reduced from 55 to 25 mN/m. The yield of biosurfactant was 8.0 g/l with a CMC of 0.03%. The biosurfactant was characterized as an anionic lipopeptide composed of 50% protein, 20% lipids, and 8% of carbohydrates.ConclusionsThe isolated biosurfactant showed no toxicity against different vegetable seeds: Brassica oleracea, Solanum gilo and Lactuca sativa L. and the micro-crustacean Artemia salina. The properties of the biosurfactant produced suggest its potential application in industries that require the use of effective compounds at low cost.  相似文献   

19.
BackgroundThe present study describes the production of biosurfactant (BS) and emulsifier (BE) by the filamentous fungus Mucor hiemalis UCP 0039, as well as the characterization and stability of the both biomolecules for environmental or industrial applications.ResultsBiosurfactants and bioemulsifiers are amphiphilic compounds and are produced as extracellular molecules. The results showed that bioproduct obtained by shaker condition reduced the water surface tension of 72 to 32 mN/m and reached an emulsification index of 96%, while the static cultivation resulted in a biomolecule with a surface tension of 40 mN/m and an emulsification index of 96%, suggesting the production of a biosurfactant and bioemulsifier, respectively. The compounds showed glycolipid nature but the biosurfactant presented cationic charge, while the bioemulsifier, anionic charge. Thus, the results confirmed that M. hiemalis produced two distinct biomolecules under different parameters and in the same culture medium.ConclusionsIt is the first time that biosurfactant and emulsifier production has been described in the same medium and under different physical conditions by Mucor hiemalis. Both biomolecules showed thermal stability, as well as have significant effect on the viscosity of hydrophobic compounds, indicating the excellent potential for environmental safety or industrial applications to improve the efficiency of sustainable and economic technologies.How to citeFerreira INS, Rodríguez DM, Campos-Takaki, GM, et al. Biosurfactant and bioemulsifier as promissing molecules produced by Mucor hiemalis isolated from Caatinga soil. Electron J Biotechnol 2020; 47. https://doi.org/10.1016/j.ejbt.2020.06.006.  相似文献   

20.
BackgroundEndoglucanase, one of three type cellulases, can randomly cleave internal β-1,4-linkages in cellulose polymers. Thus, it could be applied in agricultural and industrial processes.ResultsA novel endoglucanase gene (JqCel5A) was cloned from Jonesia quinghaiensis and functionally expressed in Escherichia coli Rosetta (DE3). It contained 1722 bp and encoded a 573-residue polypeptide consisting of a catalytic domain of glycoside hydrolase family 5 (GH5) and a type 2 carbohydrate-binding module (CBM2), together with a predicted molecular mass of 61.79 kD. The purified JqCel5A displayed maximum activity at 55°C and pH 7.0, with 21.7 U/mg, 26.19 U/mg and 4.81 U/mg towards the substrate carboxymethyl cellulose, barley glucan and filter paper, respectively. Interestingly, JqCel5A exhibited high pH stability over a broad pH range of pH (3–11), and had good tolerance to a wide variety of deleterious chemicals including heavy metals and detergent. The catalytic mechanism of JqCel5A was also investigated by site mutagenesis and homology-modeling in this study.ConclusionsIt was believed that these properties might make JqCel5A to be potentially used in the suitable industrial catalytic condition, which has a broad pH fluctuation and/or chemical disturbance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号