首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
彭光焰 《中学理科》2007,(12):10-12
恰当地应用好向量和导数,许多最值问题便迎刃而解,并且利用向量和导数来求最值,容易被学生接受.为了便于比较.一、用|a||b|≥a.b求最值例1已知x,y,z∈R ,且x y z=1,求x1 4y z9的最小值.解:令a=(1x,2y,3z),b=(x,y,z),则|a|2=1x 4y 9z,|b|2=1,(a.b)2=(1 2 3)2=36.由|a|2|b|2≥(a.b)2得,1x 4y 9z≥36,当且仅当1x=2y=3z时等号成立,即x=16,y=31,z=21.∴1x 4y 9z的最小值为36.例2已知ai,bi∈R ,且∑ni=1ai=∑ni=1bi=1,求a1a 12b1 a2a 22b2 … ana 2nbn的最小值.解析:令p=(a1a1 b1,aa2 2b2,…,anan bn,q=(a1 b1,a2 b2,…,an bn),则|p|2=a1a 21b1 a…  相似文献   

2.
题目 :已知复数 z1 =i( 1 - i) 3,( )求 argz1 及 | z1 | ;( )当复数 z满足 | z| =1 ,求 | z- z1 |的最大值 .上述第 ( )题比较直观 ,可直接求得 .z1 =i( - 2 - 2 i) =2 - 2 i=2 2 ( cos7π4 isin7π4) ,从而 argz1 =7π4,| z1 | =2 2 .而第 ( )题则是复数模的最值问题 ,本文对其分析探究 ,给出下面六种解法 :解法 1  (代数法 )设 z=a bi,( a,b∈R) ,则由条件知 a2 b2 =1 ,∴ | z - z1 | =( a- 2 ) 2 ( b 2 ) 2 =9- 4 a 4 b.令 y=- 4 a 4 b,与 a2 b2 =1联立并消去 a,可得 32 b2 - 8yb y2 - 1 6 =0 ,则由题意有 Δ=6 4y2 -…  相似文献   

3.
本刊文 [2 ]用几何方法改进并证明了文[1]出现的不等式 :已知 x,y∈ R,求证x2 +y2 +( x -1) 2 +y2 +x2 +( y -1) 2 ≥ 22 ( 3 +1) .这体现了由数到形的沟通 ,但还不是完整意义上的数形结合 ,本文补充由形到数的沟通 .首先将费马点所提供的几何意义 ,用复数乘法把 OP,AP,BP首尾连接 ,再用复数模不等式|z1 |+|z2 |+|z3 |≥ |z1 +z2 +z3 |1拉直 ,得出证明 1;然后把复数运算“翻译”为配方 ,并把 1改写为∑3i= 1a2i +b2i ≥ ( ∑3i=1ai) 2 +( ∑3i =1bi) 2 ,2得出更直接的代数证明 .其中的复数证法能说明配方的来由 ,而不是妙手偶得的技巧 .…  相似文献   

4.
题 设z是一个复数,且z(?)=4,求:|z 1 3~(1/2)i|的最值.解法1 (代数法)设z=x yi,(x、y∈R),则(?)=x-yi.z(?)=(x yi)(x-yi)=x~2 y~2=4,∴x-±(4-y~2)(1/2)∴|z 1 (3~(1/2))i|=|x yi 1 (3~(1/2))i|=|(x 1) 3~(1/2)i=((x 1)~2 (y 3~(1/2))~2)(1/2)=(8 2(x 3~(1/2)y)(1/2)令k=x 3~(1/2)y,则k-3~(1/2)y=x,  相似文献   

5.
题已知复数z满足:使ω=(z+4)/(z-4)是纯虚数.求|z|的值. 在一堂复数课中我出示了上述的题目,同学们踊跃讨论,得出了如下的四种解法,它集中概括了解决复数问题的基本策略. 解法1 设z=x+yi(x,y∈R),则有  相似文献   

6.
赵坚 《当代电大》2003,(5):23-27
1 多元函数微积分1 1 重点内容多元函数微分学 :二元函数的概念 ,二元函数定义域的确定 ,二元函数偏导数、全微分的概念及求法 ;复合函数微分法和隐函数微分法。多元函数积分学 :二重积分的定义、几何意义 ,直角坐标系下计算二重积分和交换积分次序 ,极坐标系下二重积分的计算。1 2 典型例题例 1 求函数z =f(xy ,x2 +y2 )的偏导数和全微分。解 设u=xy ,v =x2 +y2 ,由复合函数求导法则 : z x = z u u x+ z v v x =y z u+2x z v z y= z u u y+ z v v y =x z u+2 y z v全微分为 :dz = z xdx + z ydy =(y z u+2x z v)dx +(x z u+2 y z v)…  相似文献   

7.
薄峰 《甘肃教育》2000,(10):36-37
最值问题是中学数学的重点和难点内容之一,确定正确的解题方向是解题成功的关键 .本文介绍十一种最值问题的思维发散方向 . 一、联想二次函数 例 1. 求函数 y=x2-的最小值 . 解:令 u= (u≥ ),有 x2=. y=u2- u- =(u- 1)2- 2, 由根据二次 函数的性质可得 ymin=- . 二、联想函数的单调性 例 2.求函数 y=(a2>b2)的最小值 . 解:令 u= (u≥ |a|),则 y=u+ (u≥ |a|). 易证函数 y=u+ (u≥ |a|)为增函数 . ∴ 当 u=|a|,即 x=0时,函数有最小值为 . 三、联想正弦型或余弦型函数的有界性 例 3. 求函数 y=x+的最值 . 解:令 x=sinα,α∈…  相似文献   

8.
由复数加法法则可知,两个复数相加的几何意义是把加数中的一个复数对应的点进行有规律的平移,平移后得到的点对应的复数就是其和。利用这一观点解决有关复数问题更简捷。 依据:z=x+yi,z_0_a+bi(x,y,a,b∈R)由复数加法法则知z+z_0=(x+a)+(y+b)i 结论:复数z对应复平面内的点z,点z+(a+bi)是把点z沿实轴方向移动|a|个单位(a>0时向右移动;a<0时向左移动)再沿虚轴方向移动,61个单位(b>0时向上移动,b<0时向下移动)得到的。 本文称这种方法为平移法,下而举例说明这种方法的应用。 例1.如果复数z满足|z+i|+|z-i|=2,求|z+1+i|的最小值。 解:由复数的几何意义知复数z为以A(0,-1),B(0,1)为端点的线段AB,而z+1+i表线段AB向右平移一个单位,再向上平移一个单位得到的线段A′B′,(如图所示),而|z+1+i|最小值表线段A′B′上的点到原点的最短距离,即|z+1+i|_(min)=|OA′|=1。  相似文献   

9.
复数是中学代数的重要内容之一,复数沟通了代数、三角、平几、解几等各部分数学知识,因此处理复数问题时方法十分灵活,一个题常可有多种解法。如常见的,求复数 Z 在复平面上对应的点的轨迹(或求|Z|的最值)时,常设 Z=x yi(x,y∈R),将 x,y 表成同一参数的解析式,再消去其中参数,得到平面解几中关于 x,y 的普通方程,这时不难画出其图形,也不难直接从图形得出|Z|的最值;如果题目条件中已知某复数|Z_0|=r 甚至|Z_0|=1,这时一般采用三角形式 Z_0=r(cosθ tsinθ)更为方便(这时常需研究 r,θ的关系)。  相似文献   

10.
二次函数y =ax2 +bx +c(a≠ 0 )配方后可变为标准形式y =a(x + b2a) 2 + 4ac-b24a (a≠ 0 ) ,由此可以很快求出y的最值 ,初中数学中 ,有不少的最值问题 ,常常可以转化为二次函数来求解 ,下面通过几个例子来介绍几种求解方法。一、主元代入法例 1. 已知x、y、z均是实数 ,且满足x + 2y -z =6x -y + 2z =3求x2 +y2 +z2 的最小值。 (2 0 0 1年安庆市竞赛题 )解 :原方程组变为 :x + 2y =6 +zx -y =3- 2z,解得 x =4 -zy =z+ 1于是x2 +y2 +z2=(4-z) 2 + (z+ 1) 2 +z2=3z2 - 6z+ 17=3(z - 1) 2 + 14当z=1(此时x =3,y =2 )时 ,x2 +y2 +z2 取到最小值…  相似文献   

11.
在不等式 f(x)≤M(f(x)≥M)中 ,若等号成立 ,则函数 f(x)有最大 (小 )值 M,等号成立的条件就是函数 f (x)取得最大 (小 )值的条件 .但在实际解题中 ,学生往往忽视等号成立的条件 ,从而得出错误的结论 .下面举例说明 .1 运用有关的定理、性质时忽视了等号成立的条件例 1 求函数 y =x2 4 x2 - 8x 17的最小值 .错解 y=x2 4 (x- 4) 2 1,设 z1 =x 2 i,z2 =(x- 4) i,则y=| z1 | | z2 |≥ | z1 - z2 | =| (x 2 i) -[(x- 4) i]| =| 4 i| =17.分析 运用复数模的性质时 ,忽视了等号成立的条件 .上式中的等号成立的充要条件是 z…  相似文献   

12.
我们先看一个例题 :例 1 已知动点 P在上半圆 x2 y2 =1(y≥ 0 )上运动 ,定点 Q(2 ,0 ) ,线段 PQ绕点Q顺时针旋转 90°到 QR,求动点 R的轨迹以及 R到圆心 O的距离的最大值和最小值 .这类问题的解法较多 ,较常规也较简单的解法是“复数法”:图 1先把圆方程改写成复数方程 :| z|= 1 ,设动点 P,R的复数为 z P,z R,定点 Q的复数为 z Q= 2 .再利用复数的向量旋转性质可得关系式 :(z R- z Q) i=z P- z Q,解得 z P=(z R- z Q) i z Q,代入圆的复数方程得| (z R- z Q) i z Q| =1 ,代入相关数据 ,并设动点 R(x,y) ,化为普通方程即是(x…  相似文献   

13.
利用费尔马无穷递降法证明了丢番图方程x2+y4=z5,x4-y4=z5,x5+y5=(Z|z)均没有正整数解.  相似文献   

14.
在△ABC中引入代换:a=y+z,b=z+x,c=x+y于是可得三内角的一系列代数关系式:cosA=(b~2+c~2-a~2)/2bc=(x(x+y+z)-yz)/(z+x)(x+y)=1-(2yz)/(x+y)(x+z).  相似文献   

15.
一、选择题(本大题共12个小题,每小题5分,共60分;在每个小题所给的选项中,只有一项是符合题目要求的)1.若集合M={x‖3x-1|<2},N={x|x2-3x+2≤0},则M∪N等于A.{x|x≥1}B.{x|x≤2}C.{x|-130)处切线斜率为8,则此切线方程是A.8x-y-20=0B.8x-y+12=0C.8x-y-24=0D.8x-y-12=03.在右图表格的每一个格子中填上一个数字后,使每一横行各个数字成等差数列,每一纵行各个数字成等比数列,则a+b+c的值为120.51a b c A.1B.2C.3D.984.已知直线a…  相似文献   

16.
巧算平均数     
【例1】 已知a>0,b>0且a+b=1,求证a+12+b+12≤2.证明:设x=a+12,y=b+12且x+y=k则射线x+y-k=0与圆弧x2+y2=2有交点,所以|-k|2≤2即|k|≤2.∴a+12+b+12≤2【例2】 已知实数x,y满足(x-3)2+(y-3)2=92,则yx的最大值是    .解:令yx=k,则直线kx-y=0与圆(x-3)2+(y-3)2=92有交点.所以|3k-3|k2+1≤32.整理,得k2-4k+1≤0.解之,得2-3≤k≤2+3.故yx的最大值是2+3.【例3】 求函数y=2-sinx2-cosx的值域.解:令u=cosx,v=sinx,则直线yu-v-2y+2=0与圆u2+v2=1有交点.∴|-2y+2|y2+1≤1整理,得3y2-8y+3≤0.解之,得4-73≤y≤4+73故所求函数的值域为[4-73,4+73…  相似文献   

17.
利用圆心到直线的距离d与圆的半径r的大小关系,可以求有关三角题的值域、最值、角的大小、判断三角形形状、证明三角不等式以及求参数的取值范围等问题. 1.求值域 例1 求函数u=(1-sinα)/(2 cosα)的值域. 解 因为 u=(1-sinα)/(2 cosα)可化为 sinα ucosα 2u-1=0.所以点(sinα,cosα)既在直线 x uy 2u-1=0上,又在圆x2 y2=1上,于是必有 |2u-1|/((1 u2)~(1/2))≤1,  相似文献   

18.
一、选择题(每小题5分,共60分)1.已知集合A={(x,y)|y2=8x,x∈R},B={ (x,y)|y=x2,x∈R}.则A∩B=( ).(A)[0,+∞)(B){(0,0),(2,4)}(C){0,2}(D){(0,0),(1,2√2)}2.已知复数z1 =m+2i,z2=3-4i.若z1/z2为实数,则实数m的值为( ).  相似文献   

19.
最值问题是初中数学的一个重要内容,也是各种考试命题的一个热点。笔者根据自己的教学体会,将初中阶段所涉及的求函数最值问题的题目类型归纳如下。 一、求y=ax~2+bx+c(a≠0)型的最大(小) 值 当a>0时,y最小值=(4ac-b~2)/4a;当a<0时,y最大值=(4ac-b~2)/4a。 例1.求y=-2x+7的最大值. 解 ∵a<0,∴y最大值=(81)/8. 例2.求y=2x~2-3x+4的最小值. 解 ∵a<0,∴y最小值=(23)/8. 二、求隐二次函数的最大(小)值 已知y与x不成二次函数关系,但z与x成二次函数关系,可以先求z的最大(小)值,而后再求y的最大(小)值. 例3.求函数y=1/(2+(x-1)~2)的最大值.  相似文献   

20.
一类二元函数的条件最值,如能进行适当的齐次代换转化为分式函数,利用判别式法易于简捷巧妙地获解。例1 已知|3x-y|≥4,求S=2x~2-xy y~2的最小值,并求S取最小值时的x、y值。解:显然x,y不全为零,不妨设x≠0,令t=y/x。 u=S/(3x-y)~2=(2x~2-xy y~2)/(9x~2-6xy y~2)=(2-t t~2)/(9-6t t~2)化为(1-u)t~2 (6u-1)t (2-9u)=0其△=(6u-1)~2-4(1-u)(2-9u)=32u-7≥0,解得u≥7/32。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号