首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The Next Generation Science Standards (NGSS) strives to shift science learning from the teacher as a single cognitive agent, to a classroom community in which participants are working together in directing the classroom's communal knowledge to figure out questions about how phenomena occur, and building, testing, and refining their ideas to address those questions. To achieve this type of classroom environment, teachers should attend to students' knowledge and ideas and pay attention to how students are located within teacher-led interactions, such as being positioned as active discussants or designated listeners. In this study, we explore if and how this is occurring in the NGSS era. We used a naturalistic inquiry to explore how an experienced first-grade teacher used a new NGSS-aligned unit that called for students to use the science and engineering practices (SEP) to build content knowledge. We used a macro-analytic lens to answer the research question “how are class discussions shaped to address the SEP”? We used a micro-analytic lens to answer the research question “how are students positioned during these science discussions in this classroom?” Evidence suggests that the teachers' whole class discussions incorporated and involved the SEP which were specified in the unit lessons for content learning. However, on a micro-analytic level, we found that few students were positioned as active discussants. The teacher heavily relied on those students who could provide succinct and clearly relevant answers while positioning the remainder of the students as silent spectators. Implications from this research suggest that not only new NGSS curriculum materials need to focus on what students should know and do but they also need to address heuristics for teachers that show them how to position all of their students as active doers of science so all students have opportunities to build deeper, core science knowledge.  相似文献   

2.
Just as the Next Generation Science Standards (NGSSs) call for change in what students learn and how they are taught, teacher education programs must reconsider courses and curriculum in order to prepare teacher candidates to understand and implement new standards. In this study, we examine the development of prospective elementary teachers’ practical knowledge of the NGSS in the context of a science methods course and innovative field experience. We present three themes related to how prospective teachers viewed and utilized the standards: (a) as a useful guide for planning and designing instruction, (b) as a benchmark for student and self-evaluation, and (c) as an achievable vision for teaching and learning. Our findings emphasize the importance of collaborative opportunities for repeated teaching of the same lessons, but question what is achievable in the context of a semester-long experience.  相似文献   

3.
This study delves into the different roles that elementary science teachers play in the classroom to orchestrate science learning opportunities for students. Examining the classroom practices of three elementary science teachers in Singapore, we found that teachers shuttle between four key roles in enabling student learning in science. Teachers can play the role of (1) dispenser of knowledge (giver), (2) mentor of learning (advisor), (3) monitor of students’ activities (police), and (4) partner in inquiry (colearner). These roles are dynamic, and while teachers show a preference for one of the four roles, factors such as the nature of the task, the types of students, as well as the availability of time and resources affect the role that teachers adopt. The roles that teachers play in the classroom have implications for the practice of science as inquiry in the classroom as well as the identities that teachers and students form in the science learning process.  相似文献   

4.
In this article, we present a mixed-methods study of 2 schools’ elementary science programs including outdoor instruction specific to each school's culture. We explore fifth-grade students in measures of science knowledge, environmental attitudes, and outdoor comfort levels including gender and ethnic differences. We further examine students’ science and outdoor views and activity choices along with those of adults (teachers, parents, and principals). Significant differences were found between pre- and posttest measures along with gender and ethnic differences with respect to students’ science knowledge and environmental attitudes. Interview data exposed limitations of outdoor learning at both schools including standardized test pressures, teachers’ views of science instruction, and desultory connections of alternative learning settings to ‘school' science.  相似文献   

5.
Abstract

This case study presents the efforts of three high school teachers to design and implement climate change lessons in alignment with the Next Generation Science Standards (NGSS). Using three conceptual frameworks that organize the assumptions of the environment in the NGSS we examine how those assumptions influence teacher practice when teachers strive to align with the standards. Video recorded instruction of eight climate change-anchored lessons spanning three consecutive years were thematically coded. Results indicate that the problematic aspects of the NGSS’s characterization of climate change can help explain the framing of environmental issues and the compartmentalization of humans relative to the climate science in teachers’ lesson plans and instruction. The NGSS promulgate disconnected agency which appears in teacher and student talk in classrooms. Our analysis reveals opportunities to use standards to design interventions for classroom practice to support diverse students in countering the assumptions about the human-environment relationship embodied in the NGSS.  相似文献   

6.
The Next-Generation Science Standards (NGSS) challenge primary teachers and students to work and think like scientists and engineers as they strive to understand complex concepts. Teachers and teacher educators can leverage what is already known about inquiry teaching as they plan instruction to help students meet the new standards. This cross-case analysis of a multiple case study examined teacher practices in the context of a semester-long professional development course for elementary teachers. We reviewed lessons and teacher reflections, examining how kindergarten and first grade teachers incorporated NGSS scientific and engineering practices during inquiry-based instruction. We found that most of the teachers worked with their students on asking questions; planning and carrying out investigations; analyzing and interpreting data, using mathematics and computational thinking; and obtaining, evaluating and communicating information. Teachers faced challenges in supporting students in developing their own questions that could be investigated and using data collection strategies that aligned with students’ development of number sense concepts. Also, some teachers overemphasized the scientific method and lacked clarity in how they elicited and responded to student predictions. Discussion focuses on teacher supports that will be needed as states transition to NGSS.  相似文献   

7.
The use of kits in elementary science classes is a growing trend in some countries. Kits provide materials and inquiry lessons in a ready-to-teach format for teachers to use in their science instruction. This study examined elementary teachers' instructional strategies, classroom practices, and assessment types in relation to the frequency of science kit use. A total of 503 elementary teachers from an urban school district received professional development, implemented kits in their classrooms for a year, and then completed a survey about science kit use and teaching practices. Despite similarities in demographic characteristics (gender, ethnicity, certification/educational level), there were significant differences in teachers' use of inquiry-based teaching and assessment practices by kit use. Teachers who reported using kits the most often were significantly more likely to report that their students designed and implemented laboratory investigations as well recorded, represented, and analyzed data. In addition, the high kit users indicated that they were more likely to use student groups, require students to use evidence to support claims, and use alternative assessments of student work including portfolios, notebooks, and long-term projects than those teachers who used kits less frequently. Those teachers who reported using kits the least often were significantly more likely to report having students practice for standardized tests. The role of kits in promoting reform-based teaching practices is discussed.  相似文献   

8.
A teacher professional development program for in-service elementary school science teachers, the Rice Elementary Model Science Lab (REMSL), was developed for urban school districts serving predominately high-poverty, high-minority students. Teachers with diverse skills and science capacities came together in Professional Learning Communities, one full day each week throughout an academic year, to create a classroom culture for science instruction. Approximately 80 teachers each year received professional development in science content and pedagogy using the same inquiry-based constructivist methods that the teachers were expected to use in their classrooms. During this four-year study, scientists and educators worked with elementary teachers in a year-long model science lab environment to provide science content and science pedagogy. The effectiveness of the program was measured using a mix of quantitative and qualitative methods that allowed the researchers to triangulate the findings from quantitative measures, such as content test and surveys, with the emerging themes from the qualitative instruments, such as class observations and participant interviews. Results showed that, in all four years, teachers from the REMSL Treatment group have significantly increased their science content knowledge (p?<?0.05). During the last two years, their gains in science content knowledge, use of inquiry-based instruction and leadership skills were significantly higher than those of the Control group teachers' (p?<?0.01, p?<?0.001 and p?<?0.05, respectively). Three themes resonated in the interviews with participants: science content knowledge growth, constructivist pedagogy and leadership skills.  相似文献   

9.
A large body of literature illustrates that many elementary teachers are reluctant to teach science and confess a lack of confidence to teach it. Nevertheless, a review of the literature indicates a few cases of elementary teachers who do well in science and offers rare examples of enthusiast elementary teachers. The question then becomes how those cases came to be? The purpose of this study is to document two such cases of prospective elementary teachers, illustrate their unique characteristics and shed light on how those came to be. The study was designed upon a narrative inquiry approach focusing on the collection of personal stories. Multiple sources of data were used in order to examine the participants’ science teaching orientations and the kinds of experiences that influenced their development: drawings, interviews, reflective assignments, and others. The analysis of the data was grounded within the Three-Dimensional Space Narrative Structure. The findings of the analysis illustrated that the participants perceived certain experiences they had during their university coursework as critical to shaping their orientations to science and science teaching: inquiry-based investigations, contemporary theoretical discussions, outdoors field study, friendly classroom environment and the characteristics of their instructors. These findings have implications for the design of teacher education courses that aim to engage prospective elementary teachers, especially females, in meaningful learning experiences and support them in developing science teaching orientations that are in line with reform recommendations.  相似文献   

10.
Elementary teachers face increasing demands to engage children in authentic science process and argument while simultaneously preparing them with knowledge of science facts, vocabulary, and concepts. This reform is particularly challenging due to concerns that elementary teachers lack adequate science background to teach science accurately. This study examined 81 in-classroom inquiry science lessons for preservice education majors and their cooperating teachers to determine the accuracy of the science content delivered in elementary classrooms. Our results showed that 74 % of experienced teachers and 50 % of student teachers presented science lessons with greater than 90 % accuracy. Eleven of the 81 lessons (9 preservice, 2 cooperating teachers) failed to deliver accurate science content to the class. Science content accuracy was highly correlated with the use of kit-based resources supported with professional development, a preference for teaching science, and grade level. There was no correlation between the accuracy of science content and some common measures of teacher content knowledge (i.e., number of college science courses, science grades, or scores on a general science content test). Our study concluded that when provided with high quality curricular materials and targeted professional development, elementary teachers learn needed science content and present it accurately to their students.  相似文献   

11.
While a solid understanding of science content knowledge is important in developing expertise in science teaching, it is not necessarily a sufficient condition to teach science effectively in elementary schools. Teachers need to have the ability to transform their knowledge into forms learnable by students. Based on this perspective, the current study explored how science content knowledge was pedagogically transformed in Korean elementary classrooms. Data sources included video-recorded science lessons of five elementary teachers in a metropolitan city of Korea. The analysis of the data revealed that the Korean teachers often engaged in transforming science content knowledge by means of different semiotic modes, including language, pictures, materials, actions, and their complex combinations. Further, their representations of scientific knowledge were in diverse forms, such as personifications, analogies, quiz questions, pictorial models, diagrams, animations, real-life examples, hand demonstrations, videos, flash tools, and songs-and-dances. Future research involving a wider range of participants, such as students, content specialists, and teachers with weak and strong content understanding, was suggested to confirm the findings of this study and find more various ways of pedagogical transformation of science subject matter knowledge.  相似文献   

12.
随着师范教育体系的调整,师范大专生取代中师生成为历史必然。师范大专生面临基础教育改革的严峻挑战,应该具备五方面的能力和素质,同时必须变革师范教育课程设置和教师管理来适应培养基础教育所需新型师资的需要。  相似文献   

13.
Part of the work of teaching elementary science involves evaluating elementary students' work. Depending on the nature of the student work, this task can be straightforward. However, evaluating elementary students' representations of their science learning in the form of scientific models can pose significant challenges for elementary teachers. To address some of these challenges, we incorporated a modeling-based elementary science unit in our elementary science teaching methods course to support preservice teachers in gaining knowledge about and experience in evaluating students' scientific models. In this study, we investigate the approaches and criteria preservice elementary teachers use to evaluate elementary student-generated scientific models. Our findings suggest that with instruction, preservice elementary teachers can adopt criterion-based approaches to evaluating students' scientific models. Additionally, preservice teachers make gains in their self-efficacy for evaluating elementary students' scientific models. Taken together, these findings indicate that preservice teachers can begin to develop aspects of pedagogical content knowledge for scientific modeling.  相似文献   

14.
初等教育是基础教育的基础,在整个教育体系发展中处于举足轻重的地位。但随着教育持续有效的发展,初等教育依然是应试教育的代名词,教师占据主导地位,过分注重"教书"而忽视了对小学生全面发展的要求,因此引起社会对初等教育改革的强烈呼吁。通过对引领时代的民主教育思想的剖析,探究初等教育民主化发展的四个"双教育",可从本质上挖掘学生作为教育主体的潜能,从而把学生培养成为高素质的创造型人才。  相似文献   

15.
Lack of confidence towards science is a major factor in the avoidance of teaching science at elementary school. This paper reports the results of a survey that asked 28 pre-service elementary teachers what they believed contributed to their confidence towards science and the teaching of science during a second year science unit where an holistic teaching/learning approach was taken. The holistic nature of the unit was based on a model that considered six major factors to be important influences on the confidence of the pre-service teacher. Using median values, and ranking from the most to least important factor influencing their confidence, the pre-service teachers identified practicum, teacher educator, pedagogical content knowledge, learning environment, assessment and reflection. Factors within pedagogical content knowledge, ranked from most to least important, were science pedagogy, science activities, children's views of science, science content knowledge and investigating scientifically. The wide variability in responses highlighted that no single factor was perceived to be a major contributor to the pre-service teachers' confidence, but rather a balanced mix was necessary. Implications for pre-service elementary science education units are discussed.  相似文献   

16.
17.
18.
As teacher educators, we are tasked with preparing prospective teachers to enter a field that has undergone significant changes in student population and policy since we were K-12 teachers. With the emphasis placed on connections, mathematics integration, and communication by the New Generation Science Standards (NGSS) (Achieve in Next generation science standards, 2012), more research is needed on how teachers can accomplish this integration (Bunch in Rev Res Educ 37:298–341, 2013; Lee et al. in Educ Res 42(4):223–233, 2013). Science teacher educators, in response to the NGSS, recognize that it is necessary for pre-service and in-service teachers to know more about how instructional strategies in language and science can complement one another. Our purpose in this study was to explore a model of integration that can be used in classrooms. To do this, we examined the change in science content knowledge and academic vocabulary for English language learners (ELLs) as they engaged in inquiry-based science experience utilizing the 5R Instructional Model. Two units, erosion and wind turbines, were developed using the 5R Instructional Model and taught during two different years in a summer school program for ELLs. We analyzed data from interviews to assess change in conceptual understanding and science academic vocabulary over the 60 h of instruction. The statistics show a clear trend of growth supporting our claim that ELLs did construct more sophisticated understanding of the topics and use more language to communicate their knowledge. As science teacher educators seek ways to prepare elementary teachers to help preK-12 students to learn science and develop the language of science, the 5R Instructional Model is one pathway.  相似文献   

19.
The purpose of this study was to investigate elementary school pre-service teachers’ understanding of photosynthesis and to examine if a refutational text can support understanding of photosynthesis better than a non-refutational text. A total of 91 elementary school pre-service teachers read either a refutational or a non-refutational text concerning photosynthesis and then answered open-ended questions. Our results indicate that there are critical problems associated with student teachers learning about the process of photosynthesis, even after it has been systematically taught in teacher education. However, the results positively indicate that refutational science texts seem to foster effective conceptual change among student teachers. The results interestingly showed that students who read a refutational text improved their systemic and factual understanding of photosynthesis more than did those who read a non-refutational text. Especially students who had naïve prior understanding regarding photosynthesis benefitted more from a refutational text. Thus, a refutational text may act as an effective facilitator of conceptual change. These results have implications for teacher education, where conceptual mastery of the most important science phenomena, such as photosynthesis, should be achieved. A refutational text is an easy and effective way to support conceptual change in higher education. Thus, this study highlights the importance of domain-specific science education in teacher programmes.  相似文献   

20.
It is common practice in elementary science classrooms to have students create representations, such as drawings, as a way of exploring new content. While numerous studies suggest the benefits of representation in science, the majority focus on specific, canonical representations, such as graphs. Few offer insight or guidance regarding how teachers might effectively incorporate ad hoc, non-normative student-generated representations in their curricula. This study addresses this gap by detailing the relationship between two designed activities—one that supported more open-ended engagement with referents and the other that promoted a synthesis of referents—and the representational products that students generated as a result. We present data from a mixed age classroom (ages 6–9, N?=?32) as students depicted their understanding of loggerhead sea turtles. Findings indicate that students performed better when working alone in the open condition and in collaborative dyads in the synthesize condition. These results suggest that it is necessary to unpack how mediating factors (such as students' cooperative strategies, facilitator feedback and materials used) align, to support or inhibit students' representational activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号