首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surface charge is one of the most important properties of nanopores, which determines the nanopore performance in many practical applications. We report the surface charge densities of track-etched nanopores, which were obtained by measuring the streaming current and pore conductance, respectively. Experimental results reveal that surface charge densities depend significantly on the salt concentrations. In addition the values obtained with the pore conductance were always several times higher than those calculated with the streaming current, and the gel-like surface layer on the nanopore was considered to be responsible for this discrepancy.  相似文献   

2.
Nanofluidics has a unique property that ionic conductance across a nanometer-sized confined space is strongly affected by the space surface charge density, which can be utilized to construct electrical read-out biosensor. Based on this principle, this work demonstrated a novel protein sensor along with a sandwich signal enhancement approach. Nanoparticles with designed aptamer onside are assembled in a suspended micropore to form a 3-dimensional network of nanometer-sized interstices, named as nanofluidic crystal hereafter, as the basic sensing unit. Proteins captured by aptamers will change the surface charge density of nanoparticles and thereby can be detected by monitoring the ionic conductance across this nanofluidic crystal. Another aptamer can further enlarge the variations of the surface charge density by forming a sandwich structure (capturing aptamer/protein/signal enhancement aptamer) and the read-out conductance as well. The preliminary experimental results indicated that human α-thrombin was successfully detected by the corresponding aptamer modified nanofluidic crystal with the limit of detection of 5 nM (0.18 μg/ml) and the read-out signal was enhanced up to 3 folds by using another thrombin aptamer. Being easy to graft probe, facile and low-cost to prepare the nano-device, and having an electrical read-out, the present nanofluidic crystal scheme is a promising and universal strategy for protein sensing.  相似文献   

3.
This paper presents a study of electrokinetic transport in single nanopores integrated into vertically stacked three-dimensional hybrid microfluidic∕nanofluidic structures. In these devices, single nanopores, created by focused ion beam (FIB) milling in thin polymer films, provide fluidic connection between two vertically separated, perpendicular microfluidic channels. Experiments address both systems in which the nanoporous membrane is composed of the same (homojunction) or different (heterojunction) polymer as the microfluidic channels. These devices are then used to study the electrokinetic transport properties of synthetic (i.e., polystyrene sulfonate and polyallylamine) and biological (i.e., DNA) polyelectrolytes across these nanopores using both electrical current measurements and confocal microscopy. Both optical and electrical measurements indicate that electro-osmotic transport is predominant over electrophoresis in single nanopores with d>180 nm, consistent with results obtained under similar conditions for nanocapillary array membranes.  相似文献   

4.
Thanks to its unique features at the nanoscale, nanofluidics, the study and application of fluid flow in nanochannels/nanopores with at least one characteristic size smaller than 100 nm, has enabled the occurrence of many interesting transport phenomena and has shown great potential in both bio- and energy-related fields. The unprecedented growth of this research field is apparently attributed to the rapid development of micro/nanofabrication techniques. In this review, we summarize recent activities and achievements of nanofabrication for nanofluidic devices, especially those reported in the past four years. Three major nanofabrication strategies, including nanolithography, microelectromechanical system based techniques, and methods using various nanomaterials, are introduced with specific fabrication approaches. Other unconventional fabrication attempts which utilize special polymer properties, various microfabrication failure mechanisms, and macro/microscale machining techniques are also presented. Based on these fabrication techniques, an inclusive guideline for materials and processes selection in the preparation of nanofluidic devices is provided. Finally, technical challenges along with possible opportunities in the present nanofabrication for nanofluidic study are discussed.  相似文献   

5.
An easy method is introduced allowing fast polydimethylsiloxane (PDMS) replication of nanofluidic lab-on-chip devices using accurately fabricated molds featuring cross-sections down to 60 nm. A high quality master is obtained through proton beam writing and UV lithography. This master can be used more than 200 times to replicate nanofluidic devices capable of handling single DNA molecules. This method allows to fabricate nanofluidic devices through simple PDMS casting. The extensions of YOYO-1 stained bacteriophage T4 and λ−DNA inside these nanochannels have been investigated using fluorescence microscopy and follow the scaling prediction of a large, locally coiled polymer chain confined in nanochannels.  相似文献   

6.
A basic understanding of the transport mechanisms of nanostructures in a polymer brush-modified nanochannel as well as the brush-nanostructure interactions at molecular level is important to design and fabricate emerging smart nano/microfluidic channels. In this work, we report coarse-grained molecular dynamics simulations of the translocation of nanoparticles through a cylindrical nanochannel coated with the polymer brush. The effects of the interparticle interaction and grafting density on the distribution and electrokinetic transport of nanoparticles are addressed in detail. Analysis of the distribution and velocity profiles of nanoparticles from the simulations indicate that the location of nanoparticles along the radial direction and their migration velocity are very sensitive to the change of interparticle interaction. We find complicated transport dynamics of nanoparticles under the influence of various grafting densities. The nanoparticles show markedly different translocation behavior upon increasing the grafting density, which depends on the counterion distribution, free room within the brush, nanoparticle-polymer friction, and brush configuration. Our results may serve as a useful starting point for the transport of nanostructures in polymer-modified channels and help to guide the design of novel smart nanofluidic channels for controlling the migration behavior of nanostructures.  相似文献   

7.
Advances in nanofabrication and materials science give a boost to the research in nanofluidic energy harvesting. Contrary to previous efforts on isothermal conditions, here a study on asymmetric temperature dependence in nanofluidic power generation is conducted. Results are somewhat counterintuitive. A negative temperature difference can significantly improve the membrane potential due to the impact of ionic thermal up-diffusion that promotes the selectivity and suppresses the ion-concentration polarization, especially at the low-concentration side, which results in dramatically enhanced electric power. A positive temperature difference lowers the membrane potential due to the impact of ionic thermal down-diffusion, although it promotes the diffusion current induced by decreased electrical resistance. Originating from the compromise of the temperature-impacted membrane potential and diffusion current, a positive temperature difference enhances the power at low transmembrane-concentration intensities and hinders the power for high transmembrane-concentration intensities. Based on the system''s temperature response, we have proposed a simple and efficient way to fabricate tunable ionic voltage sources and enhance salinity-gradient energy conversion based on small nanoscale biochannels and mimetic nanochannels. These findings reveal the importance of a long-overlooked element—temperature—in nanofluidic energy harvesting and provide insights for the optimization and fabrication of high-performance nanofluidic power devices.  相似文献   

8.
It is known that the conductance of nanochannels as a function of electrolyte concentration deviates from a linearly proportional relationship and approaches a value independent of the concentration as the electrolyte concentration is lowered. Most of the proposed models account for this behavior by considering a constant surface charge density and an ideal electrolyte solution. However, at low electrolyte concentrations, the ideal electrolyte approximation is no longer valid because the ions that result from the atmospheric carbon dioxide dissolution in water dominate the ionic concentration. In this paper, arrays of silica nanochannels were electrically characterized via conductance measurements. The conductance at low salt concentrations is modeled by a variable surface charge model that accounts for all ionic species in solution. This model was used to determine the variable surface charge of the bare silica nanochannels as well as of chemically modified nanochannels. The model correctly predicted the variation of the nanochannel conductance observed after silane (aminopropyldimethylethoxysilane) functionalization and single-strand DNA immobilization. Finally, pH modification of bulk KCl solutions was employed as an alternative method of changing the surface charge of silica nanochannels. Surface charge calculated from conductance measurements performed at different bulk pH values confirmed that the surface charge of the silica nanochannel walls is sensitive to the H+ concentration.  相似文献   

9.
There is currently a growing interest in control of stretching of DNA inside nanoconfined regions due to the possibility to analyze and manipulate single biomolecules for applications such as DNA mapping and barcoding, which are based on stretching the DNA in a linear fashion. In the present work, we couple Finite Element Methods and Monte Carlo simulations in order to study the conformation of DNA molecules confined in nanofluidic channels with neutral and charged walls. We find that the electrostatic forces become more and more important when lowering the ionic strength of the solution. The influence of the nanochannel cross section geometry is also studied by evaluating the DNA elongation in square, rectangular, and triangular channels. We demonstrate that coupling electrostatically interacting walls with a triangular geometry is an efficient way to stretch DNA molecules at the scale of hundreds of nanometers. The paper reports experimental observations of λ-DNA molecules in poly(dimethylsiloxane) nanochannels filled with solutions of different ionic strength. The results are in good agreement with the theoretical predictions, confirming the crucial role of the electrostatic repulsion of the constraining walls on the molecule stretching.  相似文献   

10.
We studied the mobility of DNA molecules driven by an electric field through a nanofluidic device containing a periodic array of deep and shallow regions termed entropic traps. The mobility of a group of DNA molecules was measured by fluorescent video microscopy. Since the depth of a shallow region is smaller than the DNA equilibrium size, DNA molecules are trapped for a characteristic time and must compress themselves to traverse the boundary between deep and shallow regions. Consistent with previous experimental results, we observed a nonlinear relationship between the mobility and electric field strength, and that longer DNA molecules have larger mobility. In repeated measurements under seemingly identical conditions, we measured fluctuations in the mobility significantly larger than expected from statistical variation. The variation was more pronounced for lower electric field strengths where the trapping time is considerable relative to the drift time. To determine the origin of these fluctuations, we investigated the dependence of the mobility on several variables: DNA concentration, ionic strength of the solvent, fluorescent dye staining ratio, electroosmotic flow, and electric field strength. The mobility fluctuations were moderately enhanced in conditions of reduced ionic strength and electroosmotic flow.  相似文献   

11.
We reported the fabrication and characterization of nanofluidic channels by Triple Thermal Oxidation and Silicon-Glass Anodic Bonding. Planar nanochannels with depths from sub-100 nm down to sub-10 nm were realized by this method. A theoretical model was developed to precisely predict the depth of nanochannels. The depth and uniformity of nanochannels showed good stability during anodic bonding. This method is promising for various nanofluidic studies, such as nanofluidic electrokinetics, biomolecule manipulation, and energy conversion.  相似文献   

12.
Yazdi SH  White IM 《Biomicrofluidics》2012,6(1):14105-141059
We report the demonstration of an optofluidic surface enhanced Raman spectroscopy (SERS) device that leverages a nanoporous microfluidic matrix to improve the SERS detection performance by more than two orders of magnitude as compared to a typical open microfluidic channel. Although it is a growing trend to integrate optical biosensors into microfluidic channels, this basic combination has been detrimental to the sensing performance when applied to SERS. Recently, however, synergistic combinations between microfluidic functions and photonics (i.e., optofluidics) have been implemented that improve the detection performance of SERS. Conceptually, the simplest optofluidic SERS techniques reported to date utilize a single nanofluidic channel to trap nanoparticle-analyte conjugates as a method of preconcentration before detection. In this work, we leverage this paradigm while improving upon the simplicity by forming a 3D nanofluidic network with packed nanoporous silica microspheres in a microfluidic channel; this creates a concentration matrix that traps silver nanoclusters and adsorbed analytes into the SERS detection volume. With this approach, we are able to achieve a detection limit of 400 attomoles of Rhodamine 6G after only 2 min of sample loading with high chip-to-chip repeatability. Due to the high number of fluidic paths in the nanoporous channel, this approach is less prone to clogging than single nanofluidic inlets, and the loading time is decreased compared to previous reports. In addition, fabrication of this microsystem is quite simple, as nanoscale fabrication is not necessary. Finally, integrated multimode fiber optic cables eliminate the need for optical alignment, and thus the device is relevant for portable and automated applications in the field, including point-of-sample and point-of-care detection. To illustrate a relevant field-based application, we demonstrate the detection of 12 ppb of the organophosphate malathion in water using the nanofluidic SERS microsystem.  相似文献   

13.
Organic field-effect transistors (OFETs) are not only functional devices but also represent an important tool for measuring the charge-transport properties of organic semiconductors (OSs). Thus, efforts to understand the performance and characteristics of OFET devices are not only useful in helping achieve higher device efficiencies but also critical to ensuring accuracy in the evaluations of OS charge mobilities. These studies rely on OFET device models, which connect the measured current characteristics to the properties of the OSs. Developing such OFET models requires good knowledge of the charge-transport processes in OSs. In device active layers, the OS thin films are either amorphous (e.g. in organic light-emitting diodes and organic solar cells) or crystalline (e.g. those optimized for charge transport in OFETs). When the electronic couplings between adjacent OS molecules or polymer chain segments are weak, the charge-transport mechanism is dominated by hopping processes, which is the context in which we frame the discussion in this Review. Factors such as disorder, mobility anisotropy, traps, grain boundaries or film morphology all impact charge transport. To take these features fully into account in an OFET device model requires considering a nano-scale, molecular-level resolution. Here, we discuss the recent development of such molecular-resolution OFET models based on a kinetic Monte Carlo approach relevant to the hopping regime. We also briefly describe the applicability of these models to high-mobility OFETs, where we underline the need to extend them to incorporate aspects related to charge delocalization.  相似文献   

14.
Tremendous efforts have been dedicated to developing high-performance energy storage devices based on the micro- or nano-manipulation of novel carbon electrodes, as certain nanocarbons are perceived to have advantages such as high specific surface areas, superior electric conductivities, excellent mechanical properties and so on. In typical electrochemical electrodes, ions are intercalated/deintercalated into/from the bulk (for batteries) or adsorbed/desorbed on/from the surface (for electrochemical capacitors). Fast ionic transport, significantly determined by ionic channels in active electrodes or supporting materials, is a prerequisite for the efficient energy storage with carbons. In this report, we summarize recent design strategies for ionic channels in novel carbons and give comments on the promising features based on those carbons towards tailorable ionic channels.  相似文献   

15.
Electrokinetics promises to be the microfluidic technique of choice for portable diagnostic chips and for nanofluidic molecular detectors. However, despite two centuries of research, our understanding of ion transport and electro-osmotic flow in and near nanoporous membranes, whose pores are natural nanochannels, remains woefully inadequate. This short exposition reviews the various ion-flux and hydrodynamic anomalies and speculates on their potential applications, particularly in the area of molecular sensing. In the process, we revisit several old disciplines, with some unsolved open questions, and we hope to create a new one.  相似文献   

16.
A theoretical study on the transient electro-osmotic flow through a cylindrical microcapillary containing a salt-free medium is presented for both constant surface charge density and constant surface potential. The exact analytical solutions for the electric potential distribution and the transient electro-osmotic flow velocity are derived by solving the nonlinear Poisson-Boltzmann equation and the Navier-Stokes equation. Based on these results, a systematic parametric study on the characteristics of the transient electro-osmotic flow is detailed. The general behavior of transient electro-osmotic flow in a cylindrical tube is similar to that observed in a microchannel containing an electrolyte solution. However, the steady-state electro-osmotic flow significantly deviates from the typical plug flow at higher surface charge and the rate of increase in the electro-osmotic mobility is strongly suppressed due to the effect of counterion condensation. In addition, the applicability limit of these solutions is also discussed.  相似文献   

17.
Electroosmotic flow (EOF) with two or more fluids is commonly encountered in various microfluidics applications. However, no investigation has hitherto been conducted to investigate the hysteretic or flow direction-dependent behavior during the displacement flow of solutions with dissimilar ionic species. In this investigation, electroosmotic displacement flow involving dissimilar ionic solutions was studied experimentally through a current monitoring method and numerically through finite element simulations. The flow hysteresis can be characterized by the turning and displacement times; turning time refers to the abrupt gradient change of current-time curve while displacement time is the time for one solution to completely displace the other solution. Both experimental and simulation results illustrate that the turning and displacement times for a particular solution pair can be directional-dependent, indicating that the flow conditions in the microchannel are not the same in the two different flow directions. The mechanics of EOF hysteresis was elucidated through the theoretical model which includes the ionic mobility of each species, a major governing parameter. Two distinct mechanics have been identified as the causes for the EOF hysteresis involving dissimilar ionic solutions: the widening/sharpening effect of interfacial region between the two solutions and the difference in ion concentration distributions (and thus average zeta potentials) in different flow directions. The outcome of this investigation contributes to the fundamental understanding of flow behavior in microfluidic systems involving solution pair with dissimilar ionic species.  相似文献   

18.
The rapid development of online social media makes Abusive Language Detection (ALD) a hot topic in the field of affective computing. However, most methods for ALD in social networks do not take into account the interactive relationships among user posts, which simply regard ALD as a task of text context representation learning. To solve this problem, we propose a pipeline approach that considers both the context of a post and the characteristics of interaction network in which it is posted. Specifically, our method is divided into pre-training and downstream tasks. First, to capture fine contextual features of the posts, we use Bidirectional Encoder Representation from Transformers (BERT) as Encoder to generate sentence representations. Later, we build a Relation-Special Network according to the semantic similarity between posts as well as the interaction network structural information. On this basis, we design a Relation-Special Graph Neural Network (RSGNN) to spread effective information in the interaction network and learn the classification of texts. The experiment proves that our method can effectively improve the detection effect of abusive posts over three public datasets. The results demonstrate that injecting interaction network structure into the abusive language detection task can significantly improve the detection results.  相似文献   

19.
Normal and tangential surface ionic currents around low-permittivity nanocolloids with surface charges are shown to produce three different conductive mechanisms for ac-induced dipoles, all involving dynamic space charge accumulation at the double layer∕bulk interface with a conductivity jump. However, the distinct capacitor dimensions and diffusive contributions produce three disparate crossover frequencies at which the induced dipole reverses direction relative to the bulk field. A highly conducting collapsed diffuse layer, with bulk ion mobility, renders the particle conductive and produces an ionic strength independent crossover frequency for weak electrolytes. A precipitous drop in crossover frequency occurs at high ionic strengths when charging occurs only at the poles through field focusing around the insulated colloid. A peculiar maximum in crossover frequency exists between these two asymptotes for colloids smaller than a critical size when normal charging of the diffuse layer occurs over the entire surface. The crossover frequency data for latex nanocolloids of various sizes in different electrolytes of wide ranging ionic strengths are collapsed by explicit theoretical predictions without empirical parameters.  相似文献   

20.
主动变革行为是员工促进组织功能性变革的建设性行为,是一种积极主动的组织公民行为,本研究基于社会认同理论探索了中国情境下精神型领导与主动变革行为的关系。来自38个中小科技型企业中58个研发团队的229名研发人员与其团队领导的匹配数据发现,精神型领导可通过影响组织内员工内部人身份感知对其主动变革行为产生间接作用,并且该作用大小受到组织内关系人力资源管理实践与员工角色宽度自我效能的影响。结果表明当关系人力资源管理实践程度低,角色宽度自我效能水平较高时,间接作用显著,即组织内员工最有可能从事主动变革行为,跨层次双阶段被调节的中介作用得到验证,该研究结论具有积极的理论价值及实践意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号