首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In classical model reference adaptive control (MRAC), the adaptive rates must be tuned to meet multiple competing objectives. Large adaptive rates guarantee rapid convergence of the trajectory tracking error to zero. However, large adaptive rates may also induce saturation of the actuators and excessive overshoots of the closed-loop system’s trajectory tracking error. Conversely, low adaptive rates may produce unsatisfactory trajectory tracking performances. To overcome these limitations, in the classical MRAC framework, the adaptive rates must be tuned through an iterative process. Alternative approaches require to modify the plant’s reference model or the reference command input. This paper presents the first MRAC laws for nonlinear dynamical systems affected by matched and parametric uncertainties that constrain both the closed-loop system’s trajectory tracking error and the control input at all times within user-defined bounds, and enforce a user-defined rate of convergence on the trajectory tracking error. By applying the proposed MRAC laws, the adaptive rates can be set arbitrarily large and both the plant’s reference model and the reference command input can be chosen arbitrarily. The user-defined rate of convergence of the closed-loop plant’s trajectory is enforced by introducing a user-defined auxiliary reference model, which converges to the trajectory tracking error obtained by applying the classical MRAC laws before its transient dynamics has decayed, and steering the trajectory tracking error to the auxiliary reference model at a rate of convergence that is higher than the rate of convergence of the plant’s reference model. The ability of the proposed MRAC laws to prescribe the performance of the closed-loop system’s trajectory tracking error and control input is guaranteed by barrier Lyapunov functions. Numerical simulations illustrate both the applicability of our theoretical results and their effectiveness compared to other techniques such as prescribed performance control, which allows to constrain both the rate of convergence and the maximum overshoot on the trajectory tracking error of uncertain systems.  相似文献   

2.
A homing mechanism is required for repositioning as a system performs tasks repeatedly. By examining the effect of poor repositioning on the tracking performance of iterative learning control, this paper develops a varying-order learning approach for the performance improvement. Through varying-order learning, the resultant system output trajectory is ensured to follow a given trajectory with a lowered error bound, in comparison with the conventional fixed-order method. A discrete-time initial rectifying action is introduced in the formed varying-order learning algorithm, and a sufficient condition for convergence is derived. An implementable scheme is presented based on the proposed approach, and illustrated by numerical results of two examples of robotic manipulators.  相似文献   

3.
This paper investigates an adaptive prescribed performance control strategy with specific time planning for trajectory tracking of robotic manipulator subject to input constraint and external disturbances. By constructing an accumulated error vector embedded with a performance enhancement function and introducing an input auxiliary function, a specified-time control framework with built-in prescribed performance is further designed to ensure that the trajectory tracking performance. More particularly, the proposed control law is compatible with the control input saturation suppression algorithm, which is capable of improving the robustness of closed loop system. Under the framework of the proposed control strategy, it is proved by theory that all the signals in the closed-loop system are bounded, and moreover the tracking error can reach the exact convergence domain in a given time. At last, a numerical example is presented to indicate the feasibility and effectiveness of the proposed method.  相似文献   

4.
This paper is concerned with an event-triggered sliding mode control (SMC) scheme for trajectory tracking in autonomous surface vehicles (ASVs). First, an event-triggered variable that consists of tracking error, desired trajectory and exogenous input of the reference system is introduced to decrease the magnitude of the robust SMC term. Then, the reaching conditions of the designed event-triggered sliding mode are established. Moreover, the event-triggered induced errors that exist in the rotation matrix of the ASV are analyzed. In the presence of parameter uncertainties and external disturbances, the proposed event-triggered SMC scheme can ensure the control accuracy and low-frequency actuator updates. Then both actuator wear and energy consumption of the actuators can be reduced comparing with the traditional time-triggered controller. The proposed controller not only guarantees uniform ultimate boundedness of the tracking error but also ensures non-accumulation of inter-execution times. The results are illustrated through simulation examples.  相似文献   

5.
The interferences and drivers' maloperations are important factors affecting vehicle driving safety. This paper investigates the problem of authority allocation to weaken the impact of interferences and drivers’ maloperations on the shared steering control system. Based on the parallel framework of the shared steering control system, an extended framework including the upper level and the lower lever is proposed. The lower lever is used to realize the shared steering control, which includes the driver model, trajectory tracking controller and vehicle model. To improve the robustness of the system, the uncertainty of vehicle dynamics parameters is considered in the trajectory tracking controller, including tire cornering stiffness and longitudinal velocity. The upper level is used to calculate the authority level of the driver and controller required by the lower lever, which consists of an authority dynamic allocation model and an authority allocation decision strategy. The role of the authority dynamic allocation model is to calculate the reference allocation level of the driver and controller dynamically. When the driver's operation and vehicle working states are trustworthy, the reference allocation levels of the driver and controller will be followed. Conversely, a decision result will be gained by the authority allocation decision strategy to replace the reference allocation levels, and the sum of the authority levels of the driver and the automation will not be fixed as 1. The simulation results show that the proposed approach can effectively improve vehicle driving safety, anti-interference and reliability, and can effectively reduce the impact of crosswind and driver's maloperation on vehicle safety, and alleviate the driver's operation load.  相似文献   

6.
This paper studies the cooperative fault-tolerant formation control problem of tracking a dynamic leader for heterogeneous multiagent systems consisting of multipile unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) with actuator faults under switching directed interaction topologies. Based on local neighborhood formation information, the distributed fault-tolerant formation controllers are constructed to ensure that all follower UAVs and UGVs can accomplish the demanding formation configuration in the state space and track the dynamic leader’s trajectory. By incorporating the sliding mode control and adaptive control technique, the actuator faults and unknown parameters of follower agents can be compensated. Through the theoretical analysis, it is proved that the cooperatively semiglobally uniformly ultimately boundedness of the closed-loop system is guaranteed, and the formation tracking errors converge to a small adjustable neighborhood of the origin. A simulation example is introduced to show the validity of the proposed distributed fault-tolerant formation control algorithm.  相似文献   

7.
In this paper, the finite horizon tracking control problem of probabilistic Boolean control networks (PBCNs) is studied. For a given reference output trajectory, two trackability definitions are introduced according to whether the tracking probability is 1. Under the framework of the semi-tensor product, some necessary and sufficient conditions are obtained to determine whether the reference output trajectory is trackable with probability (probability one) by a PBCN starting from a given initial state. Based on this, two algorithms are proposed to determine the maximum tracking probability and the corresponding optimal control policy sequence. By determining the tracking error of the reference output trajectory, two related optimal control problems are considered: one is to minimize the expected value of the total tracking error, and the other is to minimize the maximum tracking error. Inspired by dynamic programming, corresponding algorithms are given to solve these two problems. Finally, two examples are given to verify the validity and correctness of the results.  相似文献   

8.
In this paper, a novel tracking control scheme for continuous-time nonlinear affine systems with actuator faults is proposed by using a policy iteration (PI) based adaptive control algorithm. According to the controlled system and desired reference trajectory, a novel augmented tracking system is constructed and the tracking control problem is converted to the stabilizing issue of the corresponding error dynamic system. PI algorithm, generally used in optimal control and intelligence technique fields, is an important reinforcement learning method to solve the performance function by critic neural network (NN) approximation, which satisfies the Lyapunov equation. For the augmented tracking error system with actuator faults, an online PI based fault-tolerant control law is proposed, where a new tuning law of the adaptive parameter is designed to tolerate four common kinds of actuator faults. The stability of the tracking error dynamic with actuator faults is guaranteed by using Lyapunov theory, and the tracking errors satisfy uniformly bounded as the adaptive parameters get converged. Finally, the designed fault-tolerant feedback control algorithm for nonlinear tracking system with actuator faults is applied in two cases to track the desired reference trajectory, and the simulation results demonstrate the effectiveness and applicability of the proposed method.  相似文献   

9.
In this paper, a novel on-line observer-based trajectory tracking strategy for leader-follower formation of multiple nonholonomic mobile robots is developed. In the proposed strategy, a leader robot follows a certain trajectory whereas a number of followers track the leader as specified by a formation protocol. Unlike other techniques in the literature, a predefined trajectory is not required, and it can be changed on-line. Moreover, this strategy aims to have a fast transient response without showing undesired overshoots. To achieve this feature, a new observer is introduced. Based on the output of that observer, a control strategy with two components is derived. The first control component is responsible for tracking the desired trajectory, whereas the second control component is used to regulate the robot to its desired steady state position. The stability of the closed loop control system is investigated. Applications of the proposed observer-based controller to different case studies are presented to illustrate the effectiveness, robustness and applicability of the developed technique. To show the superiority of proposed controller, its performance in a trajectory tracking application is compared to that of a Lyapunov-based controller.  相似文献   

10.
In this paper, a novel backstepping-based adaptive dynamic programming (ADP) method is developed to solve the problem of intercepting a maneuver target in the presence of full-state and input constraints. To address state constraints, a barrier Lyapunov function is introduced to every backstepping procedure. An auxiliary design system is employed to compensate the input constraints. Then, an adaptive backstepping feedforward control strategy is designed, by which the tracking problem for strict-feedback systems can be reduced to an equivalence optimal regulation problem for affine nonlinear systems. Secondly, an adaptive optimal controller is developed by using ADP technique, in which a critic network is constructed to approximate the solution of the associated Hamilton–Jacobi–Bellman (HJB) equation. Therefore, the whole control scheme consists of an adaptive feedforward controller and an optimal feedback controller. By utilizing Lyapunov's direct method, all signals in the closed-loop system are guaranteed to be uniformly ultimately bounded (UUB). Finally, the effectiveness of the proposed strategy is demonstrated by using a simple nonlinear system and a nonlinear two-dimensional missile-target interception system.  相似文献   

11.
An adaptive sliding mode trajectory tracking controller is developed for fully-actuated robotic airships with parametric uncertainties and unknown wind disturbances. Based on the trajectory tracking model of robotic airships, an adaptive sliding mode control strategy is proposed to ensure the asymptotic convergence of trajectory tracking errors and adaptive estimations. The crucial thinking involves an adaptive scheme for the controller gains to avoid the off-line tuning. Specially, the uncertain physical parameters and unknown wind disturbances are rejected by variable structure control, and boundary layer technique is employed to avoid the undesired control chattering phenomenon. Computer experiments are performed to demonstrate the performance and advantage of the proposed control method.  相似文献   

12.
This paper considers a synchronization strategy for a group of differentially driven mobile robots subject to input time-delayed control signals. The continuous time model of the vehicles is exactly discretized in order to obtain a larger dimension representation free of delays. The control strategy is based on the concept of synchronization, under two main assumptions: a specific formation for the group of robots and the tracking of a particular desired trajectory. The control strategy proposed in this work allows the consideration of causal feedback laws avoiding the use of an additional prediction strategy that counteracts the undesired input time-delay effects. The performance of the synchronization strategy is evaluated by real-time experiments with the help of a group of three mobile robots and an indoor absolute localization system based on artificial vision.  相似文献   

13.
A novel offset-free trajectory tracking control strategy is proposed for a hypersonic vehicle under external disturbances and parameter uncertainties. In order to realize the real-time control for the hypersonic vehicle, the predictive control law is divided into the on-line design and off-line design. Unlike general nonlinear disturbance observer-based control which involves designing the disturbance compensation strategy, the influences of the disturbances on the velocity and altitude are attenuated by the direct feedback compensation (DFC). Particularly, the offset-free tracking feature is proved for the output reference signal. Simulations show that the real-time control can be realized for the hypersonic vehicle, the controls and angle of attack are all in their given constraint scopes, and the velocity and altitude can track the given references accurately even under mismatched disturbances.  相似文献   

14.
This paper presents an integrated and practical control strategy to solve the leader–follower quadcopter formation flight control problem. To be specific, this control strategy is designed for the follower quadcopter to keep the specified formation shape and avoid the obstacles during flight. The proposed control scheme uses a hierarchical approach consisting of model predictive controller (MPC) in the upper layer with a robust feedback linearization controller in the bottom layer. The MPC controller generates the optimized collision-free state reference trajectory which satisfies all relevant constraints and robust to the input disturbances, while the robust feedback linearization controller tracks the optimal state reference and suppresses any tracking errors during the MPC update interval. In the top-layer MPC, two modifications, i.e. the control input hold and variable prediction horizon, are made and combined to allow for the practical online formation flight implementation. Furthermore, the existing MPC obstacle avoidance scheme has been extended to account for small non-apriorily known obstacles. The whole system is proved to be stable, computationally feasible and able to reach the desired formation configuration in finite time. Formation flight experiments are set up in Vicon motion-capture environment and the flight results demonstrate the effectiveness of the proposed formation flight architecture.  相似文献   

15.
This work is dedicated to solving the adaptive fuzzy decentralized tracking control issue of large-scale nonlinear systems with full-state constraints. Different with barrier Lyapunov function, the main difference is that a novel nonlinear state-dependent function (NSDF) is introduced to prevent the state constraints being overstepped. Based on NSDF, the necessary feasibility conditions for virtual controllers are completely removed. Then, the prior knowledge of the unknown virtual control coefficients is no longer required since the original system is transformed via the new affine variable. Under the control strategy, three objectives on system performance are achieved: (a) all signals of the closed-loop system are bounded; (b) the subsystem output closely tracks the reference trajectory and original error is ultimately uniformly bounded; (c) the full-state constraints are not violated for all the time. At the end, two simulation examples are shown to verify the effectiveness of the control method.  相似文献   

16.
This paper investigates the practical leader-follower formation control issue of underactuated vehicles. To achieve the waypoints-based formation navigation, the autonomous dynamic logic (ADL) guidance is proposed by incorporating the marine practice into the virtual ship-based formation guidance strategy. In the proposed guidance, only a dominant virtual leader is required for constructing the waypoints-based formation reference framework, which shows the simplicity and the practicability. As for the control part, a constrained output feedback algorithm is developed by means of the linear extended state observer (LESO). By constructing the augmented variable, the model uncertainty and unknown disturbances are integrated to be estimated and compensated together. In addition, a second-order dynamic auxiliary system is designed to handle the problem of actuator saturation, where two additional saturation compensation terms are introduced to stabilize the kinematics and the kinetics error dynamics, respectively, and the smoothness of constrained control signals can be guaranteed owing to the modification of Gaussian error function. Using the Lyapunov direct method, all signals in the closed-loop system are proved to be semi-global uniformly ultimately bounded (SGUUB). Finally, two simulation experiments, including the comparative experiment and the formation navigation experiment in the presence of simulated ocean disturbances, are carried out to illustrate the feasibility and the superiority of proposed scheme.  相似文献   

17.
This study focuses on a sampled-data fuzzy decentralized tracking control problem for a quadrotor unmanned aerial vehicle (UAV) under the variable sampling rate condition. To this end, the overall dynamics of the quadrotor is expressed as a decentralized Takagi–Sugeno (T–S) fuzzy model interconnected with each other. Although the proposed decentralized control technique divides the overall UAV control system into attitude and position subsystems, the stability of the entire control system is guaranteed. Besides, in this paper, the model uncertainty, interconnection, and reference trajectory are considered as disturbances acting on the tracking error. To attenuate these disturbances, a novel sampled-data tracking control design technique is derived based on a linear reference model to be tracked and the time-dependent Lyapunov–Krasovskii functional (LKF). By doing so, both the stability of the tracking error dynamics and the minimization of tracking performance are guaranteed. Also, the proposed tracking control design method is derived as a linear matrix inequality (LMI)-based optimal problem. Finally, a simulation example is provided to demonstrate the effectiveness and feasibility of the proposed design methodology.  相似文献   

18.
This paper studies the problem of point stabilization and trajectory tracking of underactuated surface vessels. Different from the models in the Euclidean space, the dynamics of the surface vessel is described on the tangent bundle of a matrix Lie group, and we utilize geometric control approaches to design the stabilization and tracking strategies. Firstly, a point stabilization controller is presented based on the logarithm map of the Lie group, which can stabilize the surface vessel to a desired configuration globally and asymptotically. Next, a relative system of the follower with respect to the leader is defined, so that the tracking problem is converted to the relative system’s stabilization. Then, we use a decomposition method to stabilize the relative system and derive the tracking controller by dint of the stabilization strategy for a single surface vessel. Finally, numerical simulations are provided to verify the effectiveness of the proposed controllers.  相似文献   

19.
In this paper, a convex optimization algorithm is proposed to solve the online trajectory optimization problem of boost back of vertical take-off/vertical landing reusable launch vehicles. To achieve high-precision landing of launch vehicles, trajectory optimization of the boost-back flight phase considering the accuracy of entry is carried out, especially in emergencies. The trajectory optimization problem is formulated as an optimal control problem with minimum fuel consumption, and then it is transformed into a series of convex optimization subproblems, which can be solved by primal-dual interior-point method accurately and rapidly. During the transformation, flip-Radau pseudospectral discretization method, lossless convexification and successive convexification technology are applied. To drive the vehicle to predetermined entry points at the expected velocity, terminal constraints are expressed as orbital constraints of the endpoint in the boost-back flight phase. Considering the influence of Earth's rotation, the right ascension of the ascending node of the target orbit is updated according to the time and true anomaly at the end of the boost-back flight phase. Furthermore, the homotopy method is applied to the situation where there is no good initial guess when emergency happens. The algorithm presented in this paper performs well upon the simulation experiments of mission change and thrust decline. With good accuracy, high computational efficiency, and excellent robustness, the convex approach proposed has a great potential for onboard application in reusable launch vehicles and other space vehicles.  相似文献   

20.
In this paper, a flatness-based adaptive sliding mode control strategy is presented to solve the trajectory tracking problem of a quadrotor. According to the differential flatness theory, the typical under-actuated quadrotor dynamics is transformed into a fully-actuated one. Based on this model, backstepping sliding mode controllers are designed to solve the trajectory tracking problem. To improve the robustness to disturbances, extended state observers are applied as a feedforward compensation of disturbances. Moreover, considering the high-order dynamics and possible instability caused by large observer gains, the adaptive method is applied to compensate for the estimation error. The effectiveness of the proposed control scheme is verified in simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号