首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
文[1]将2009年湖北省高考数学试题文(20关于抛物线的一个性质推广到了整个圆锥曲线,得到如下结论:定理过圆锥曲线C的焦点F的直线与圆锥曲线相交于M、N两点,自M、N向准线L作垂线,垂足分别为M1、N1,记△FMM1、△FM1N1、△FNN1的  相似文献   

2.
文 [1]指出了圆锥曲线焦点弦的一个统一性质 ,读了有所启发 .由于证明较繁 ,笔者经过探索发现点 A可以是圆锥曲线上任意点的情况 ,并分别给出它们的统一命题及其简证 .引理 设过圆锥曲线焦点 F,相应的准线为 l,作一直线交圆锥曲线于 A,P两点 ,交l于 M点 ,则 FM平分△ AFP的∠ AFP的外角 .图 1证明  (以椭圆为例 ,双曲线、抛物线证法类似 .)如图 1,从 A,P分别向 l引垂线 AA1 ,PP1 ,垂足为 A1 ,P1 ,由圆锥曲线定义得 :| AF|| AA1 | =| PF|| PP1 | =e,(1)又因为△AA1 M∽△PP1 M,所以 ,| AA1 || PP1 | =| AM|| PM| ,(2 )由…  相似文献   

3.
在文[1]、[2]、[3]、[4]中分别给出了下面一道 MO 试题的证明方法.包括解析法,向量法,平面几何证法,其中平面几何证法中,有用了梅涅劳斯定理,和避开这一定理,适合初中学生,但证明时,其辅助线较多,证明也不够明快,下面再给一种证法.  相似文献   

4.
文[1]与文[2]分别给出了圆锥曲线直角弦上点轨迹的统一方法,其中文[1]利用高等数学中的导数知识证明定理1,文[2]虽用初等数学方法证明了定理1,但证明过程过于繁琐,以中学生的运算能力难以完成.本文另辟蹊径,给出一种简捷证明方法,并对文[1]与文[2]中的结论进行推广,现介绍如下.  相似文献   

5.
本刊2002(4)文[1]把文[2]的有两边与轴夹等角的椭圆内接三角形的性质(即文[1]的“定理”)移植到抛物线、双曲线(即文[1]的定理1、定理2),这三个定理揭示了椭圆、双曲线、抛物线的一个共性,读后颇受启发.本文把这一共性加以综合、引伸.并给出上述三个定理的一个简捷的统一证明. 我们把椭圆、双曲线、抛物线统一为圆锥曲线Г:f(x,y)=Ax2 Cy2 Dx Ey F=0.把文[1]的三个定理综合为. 定理设△ABC内接于圆锥曲线Г:f(x,y)=Ax2 Cy2 Dx Ey F=0,其两边AB、AC与Г的对称轴夹等角的充要条  相似文献   

6.
<正>文献[1]给出了圆锥曲线与通径有关的一个统一性质,即:性质1—3,在此基础上归纳出如下定理:定理:已知圆锥曲线C,点Q是过焦点F的通径的一个端点,点P是曲线C上的任意一点,点P在过焦点F所在的对称轴上的射影为点M,曲线C在点Q处的切线与直线PM交于点N,则|PF|=|MN|.文献[1]中只对圆锥曲线C分别为椭圆、双曲线、抛物线的情形下分别给出了性质1—3的证明,对定理没有给出统一证  相似文献   

7.
文[1]给出了圆锥曲线的一组统一性质,但文中三个定理中涉及的点A是对称轴上的一个特殊定点(A是圆锥曲线的一条准线与对称轴的交点).事实上,对于圆锥曲线对称轴上的任意一定点(不与顶点、中心重合)仍有文[1]中阐述的统一性质,以下我们用一个统一的结论给出圆锥曲线涉及对称.轴的一个较一般的性质及其简捷证明.  相似文献   

8.
<正>2019年全国高中数学联赛广西预赛第11题是一道平面几何试题:题目如图1所示,AD、AH分别是△ABC (其中AB>AC)的角平分线、高线,点M是AD的中点,△MDH的外接圆交CM于点E.求证:∠AEB=90°.此题的主要构形为三角形与圆,涉及圆内接四边形、角平分线及四点共圆的有关性质.文[1]利用相似和到角给出了证明.笔者观察图形的结构特征,结合平面几何中的常用定理及几何变换,从多个视角给出下面几种不同的证明方法.  相似文献   

9.
文[1]、文[2]给出了圆锥曲线与顶点有关的一组对偶元素的性质,文[3]给出过焦点的直线与准线的性质,笔者通过合情猜想类比探究,发现圆锥曲线有一个与焦点有关的性质,结论如下:定理1已知椭圆  相似文献   

10.
在文[1]、[2]中分别给出了下面一道 MO试题的解析法证明和平几法的证明.文[2]中的证法用了梅涅劳斯定理,本文再给出一种不用梅涅劳斯定理的证法.题目,在△ABC中.AA_1为中线,AA_2  相似文献   

11.
对一个定理结论的修正与推广   总被引:1,自引:1,他引:0  
文[1]给出圆锥曲线的一个优美性质,其中定理2与定理3的结论有误,本文对其作出修正,并将结论推广.  相似文献   

12.
文[2]、文[3]及文[4]分别给出了圆锥曲线的几个性质,这几个性质的背景实际上是射影几何中与极点与极线有关的一些定理.本文先介绍射影几何的若干知识点,并由此出发对文[2]、文[3]及文[4]的几个性质给予简证,最后得到圆锥曲线切线的几何画法.  相似文献   

13.
关于圆锥曲线文[1]给出如下一个性质: 定理1设l是圆锥曲线C过焦点F的对称轴。A是l上一定点(A不是C的中心).过A的直线与圆锥曲线C相交于M,N两点.而以M,N为切点的曲线C的两切线相交于Q点,当M在C上运动时:  相似文献   

14.
文[1]给出了关于圆锥曲线与等差数列的一个性质,文[2]给出了关于圆锥曲线与等比数列的一个性质,文[3]对前二个性质进行了补充和再探.笔者阅读后,深受启发.在本文给出关于圆锥曲线的又一类轨迹.  相似文献   

15.
贵刊文 [1 ]中给出了定理 1 在△ABC中 ,AD、BE相交于F ,若 AEEC=m ,CDDB=n ,则 S△ABFS△ABC=mmn +m +1 。此定理应用较广泛 ,但在证明过程中应用了中学教材中未介绍的梅涅劳斯定理 ,不适合向广大中学生讲授。本文给出一个易被中学生接受的浅显证明 ,并说明其在证明文 [2 ]定理中的应用 ,供参考。 (文 [1 ]中的证明请见文 [1 ],这里略。)证明 如图 1 ,作EH∥BC交AD于点H ,则EHCD =AEAC=AEAE +EC ①BFFE=BDEH=BDDC·DCEH ②图 1∴ BFFE =1n ·1 +mm =1 +mmn ,∴S△ABF ∶S△ABE =1 +m1 +m +mn。又∵S△ABE…  相似文献   

16.
文[1]的定理4得出了椭圆切线的一个性质,文[2]和文[3]得出了圆锥曲线焦点弦的一组性质,本文研究得出了圆锥曲线以焦点为顶点的角的一组更一般的性质,并由此得到两个推论.  相似文献   

17.
文[1]、[2]给出了椭圆准线上点的几个有趣性质,笔者读后深受启发,美中不足的是证明粒为繁复.本文利用平几知识,结合正弦定理给出一种可操作性强,易被学生认知的简单证法,同时使用该法,可以容易证明椭圆准线上点的几个有趣的新性质.需要指出的是,这些有趣的性质已引起一些命题者,尤其是高考命题者的关注(如本文例7,文[5]仍用文[1]的方法作了探讨)。  相似文献   

18.
文 [1]揭示了圆锥曲线离心率e的几何性质 ,读文联想 ,发现圆锥曲线的顶点也有一个美妙的几何特征 .定理 1 设P是椭圆上 (除长轴端点 )任意一点 ,F1、F2 是椭圆的两个焦点 ,则△PF1F2 的与焦半径相切的旁切圆切长轴于相应的顶点 .     图 1证明 如图 1,设△PF1F2 的旁切圆⊙I切焦半径PF1于点Q ,切另一焦半径F2 P的延长线于点M ,与长轴A1A2 所在直线切于点N .根据椭圆的定义和圆的切线长定理 ,得2 |NF1| =|NF1| |F2 Q|=(|NF2 |-|F1F2 |) (|PF1|-|PQ|)=|MF2 |- |MP| |PF1…  相似文献   

19.
文[1]给出圆锥曲线的如下性质: 定理1(文[1]的性质2)圆锥曲线中过同一焦点的两条弦,组成一个四边形的对角线,如果这个四边形的对边所在的直线相交,那么交点在与该焦点相应的准线上.  相似文献   

20.
本刊2001年第2期刊登的文[1]给出了圆锥曲线f(x,y)=Ax2+Cy2+Dx+Ey+F=0的一个性质,即文[1]中的"定理3"("定理3"包含了文[1]中的定理1和定理2的所有情形,是定理1和定理2的进一步描述):  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号